分析 由题意可得ax2-2x-2>0在x∈[1,2]上恒成立,即有$\frac{1}{2}$a>($\frac{1}{{x}^{2}}$+$\frac{1}{x}$)max,由配方结合二次函数的最值求法可得最大值2,即可得到a的范围.
解答 解:log2(ax2-2x+2)>2在x∈[1,2]上恒成立,即为
ax2-2x-2>0在x∈[1,2]上恒成立,
即有$\frac{1}{2}$a>($\frac{1}{{x}^{2}}$+$\frac{1}{x}$)max,
由$\frac{1}{{x}^{2}}$+$\frac{1}{x}$=($\frac{1}{x}$+$\frac{1}{2}$)2-$\frac{1}{4}$,x∈[1,2],即有$\frac{1}{x}$∈[$\frac{1}{2}$,1],
可得x=1,即$\frac{1}{x}$=1,取得最大值2.
则$\frac{1}{2}$a>2,解得a>4.
故答案为:(4,+∞).
点评 本题考查函数恒成立问题的解法,注意运用参数分离和二次函数的最值的求法,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{6}}{15}$ | B. | 5 | C. | $\frac{5\sqrt{6}}{2}$ | D. | 5$\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com