精英家教网 > 高中数学 > 题目详情
已知f(x)=lg(x2-2ax-a)在区间(-∞,-3)上是减函数,求实数a的取值范围.
考点:复合函数的单调性
专题:计算题,函数的性质及应用
分析:令令t=x2-2ax-a,则y=lgt,要使题设函数在区间(-∞,-3)上是减函数,只要t=x2-2ax-a在区间(-∞,-3)上是减函数,且t>0,由此求得实数a的取值范围.
解答: 解:令t=x2-2ax-a,则y=lgt.
∵y=lgt是增函数,
∴要使题设函数在区间(-∞,-3)上是减函数,只要t=x2-2ax-a在区间(-∞,-3)上是减函数,且t>0,
故有a≥-3且x2-2ax-a>0在(-∞,-3)上恒成立,
∴a>-
9
5
点评:本题主要考查对数函数的单调性和特殊点,二次函数的性质,体现了转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设命题p:函数f(x)=lg(ax2-x+
1
16
a)的定义域为R;命题q:不等式3x-9x<a对一切正实数x均成立.
(Ⅰ)如果p是真命题,求实数a的取值范围;
(Ⅱ)如果命题“p或q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x+6)+f(x)=0,函数y=f(x-1)关于点(1,0)对称,f(2)=4,则f(2014)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-2x,g(x)=x2+m(m∈R)
(Ⅰ)对于函数y=f(x)中的任意实数x,在y=g(x)上总存在实数x0,使得g(x0)<f(x)成立,求实数m的取值范围
(Ⅱ)设函数h(x)=af(x)-g(x),当a在区间[1,2]内变化时,
(1)求函数y=h′(x)x∈[0,ln2]的取值范围;
(2)若函数y=h(x),x∈[0,3]有零点,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x|x-2m|,设-2<m<0,记f1(x)=f(x),fk+1(x)=f(fk(x))(k∈N*),则函数y=f2014(x)的零点个数为(  )
A、2B、3
C、2014D、2015

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若函数f(x)=asinx+cosx的一个对称中心是(
π
6
,0),则a的值为-
3

②函数f(x)=cos(2x+
π
2
)在区间[0,
π
2
]上单调递减;
③已知函数f(x)=2sin(2x+φ)(-π<φ<π),若f(
π
6
)≤f(x)对任意x∈R恒成立,则φ=-
6

④函数f(x)=tan|x|既是偶函数又是周期函数;
⑤函数f(x)=sin(2x-
π
3
)+1的最小正周期为π.
其中所有正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:函数f(x)=
ex-e-x
2
为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

某水果批发店,100千克内(包含100kg)单价为1元/kg,100kg以上、500kg以内单价为0.9元/kg,500kg以上单价为0.6元/kg,求批发xkg水果应付的钱数y(元),并求批发600kg需要多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列说法:
①不等于0的所有偶数可以组成一个集合;
②高一(1)班的所有高个子同学可以组成一个集合;
③{1,2,3,4}与{4,2,3,1}是不同的集合;
④实数中不是有理数的所有数能构成一个集合.
其中正确的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

同步练习册答案