精英家教网 > 高中数学 > 题目详情
3.已知$\overrightarrow{a}$、$\overrightarrow{b}$是不共线的向量,$\overrightarrow{AB}$=λ$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{AC}$=$\overrightarrow{a}$+μ$\overrightarrow{b}$(λ、μ∈R),当A、B、C三点共线时,λ的取值不可能为(  )
A.1B.0C.-1D.2

分析 A、B、C三点共线,可知:存在实数k,使得$\overrightarrow{AB}=k\overrightarrow{AC}$,于是λ$\overrightarrow{a}$+$\overrightarrow{b}$=k($\overrightarrow{a}$+μ$\overrightarrow{b}$)(λ、μ∈R).由于$\overrightarrow{a}$、$\overrightarrow{b}$是不共线的向量,可得$\left\{\begin{array}{l}{λ=k}\\{1=kμ}\end{array}\right.$,即可判断出.

解答 解:∵A、B、C三点共线,
∴存在实数k,使得$\overrightarrow{AB}=k\overrightarrow{AC}$,
∴λ$\overrightarrow{a}$+$\overrightarrow{b}$=k($\overrightarrow{a}$+μ$\overrightarrow{b}$)(λ、μ∈R).
∵$\overrightarrow{a}$、$\overrightarrow{b}$是不共线的向量,
∴$\left\{\begin{array}{l}{λ=k}\\{1=kμ}\end{array}\right.$,
∴λ≠0.
故选:B.

点评 本题考查了向量共线定理、向量共面定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知命题p:“?x0∈R,sinx0<m”,命题q:.?x∈R,x2+mx+1>0恒成立.若p∧q是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛物线y=$\frac{1}{4}$x2的焦点关于直线x-y-1=0的对称点的坐标是 (  )
A.(2,-1)B.(1,-1)C.($\frac{1}{4}$,-$\frac{1}{4}$)D.($\frac{1}{16}$,-$\frac{1}{16}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数y=$\frac{{x}^{4}+4{x}^{3}+17{x}^{2}+26x+106}{{x}^{2}+2x+7}$的最大值与最小值,其中|x|≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知p:x2-2x-3<0,若-a<x-1<a是p的一个必要条件但不是充分条件,求使a>b恒成立的实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{\root{3}{{x}^{2}+2x+1}+\root{3}{{x}^{2}-1}+\root{3}{{x}^{2}-2x+1}}$,求f(1)+f(3)+f(5)+…+f(2k-1)+…+f(999)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.求下列余弦值:cos2013π=-1;cos(-$\frac{13π}{6}$)=$\frac{\sqrt{3}}{2}$;cos780°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{{p{x^2}+1}}{x+q}$是奇函数,且f(2)=$\frac{5}{2}$.
(1)求实数p,q的值;
(2)判断f(x)在[1,+∞)上的单调性,并证明你的结论;
(3)若对任意的t≥1,试比较f(t2-t+1)与f(2t2-t)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过点P(1,2)的直线l与圆C:x2+(y-1)2=4交于A,B两点,当∠ACB最小时,直线L的方程为(  )
A.2x-y=0B.x-y+1=0C.x+y-3=0D.x=1

查看答案和解析>>

同步练习册答案