精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的一个焦点 ,两个焦点与短轴的一个端点构成等边三角形.

)求椭圆的标准方程;

)过焦点 轴的垂线交椭圆上半部分于点,过点作椭圆的弦,设弦 所在的直线分别交轴于两点,若为等腰三角形时,问直线的斜率是否为定值?若是,求出这个定值;若不是,请说明理由.

【答案】(Ⅰ);(Ⅱ)直线斜率为定值,该定值为.

【解析】

1)根据题意,分析可得的值,进而分析可得,由椭圆的几何性质分析可得的值,代入椭圆的方程即可得答案;

2)根据题意,设出直线方程,设,将直线的方程与椭圆联立,分析可得,由根与系数的关系分析可得答案.

1)由题意可知椭圆的半焦距,由两个焦点与短轴的一个端点构成等边三角形得 ,又,解得

所以椭圆的标准方程为

2)易知.因为直线的倾斜角互补,所以直线的斜率与的斜率互为相反数.

可设直线的方程为,代入,消去

所以,可得

又直线的斜率与的斜率互为相反数,

所以在上式中以代替,可得

所以直线的斜率

即直线斜率为定值,该定值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】,对于,有.

(1)证明:

(2),

证明 :(I)当时,

(II)当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一机器可以按各种不同的速度运转,其生产物件有一些会有缺点,每小时生产有缺点物件的多少随机器运转速度而变化,用x表示转速(单位:转/秒),用y表示每小时生产的有缺点物件个数,现观测得到的4组观测值为

(1)假定yx之间有线性相关关系,求yx的回归直线方程.

(2)若实际生产中所容许的每小时最大有缺点物件数为10,则机器的速度不得超过多少转/秒?(精确到1转/秒)

回归直线的斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx),gx)满足关系gx)=fxfx),其中α是常数.

(1)设fx)=cosx+sinx,求gx)的解析式;

(2)设计一个函数fx)及一个α的值,使得

(3)当fx)=|sinx|+cosx时,存在x1x2R,对任意xRgx1)≤gx)≤gx2)恒成立,求|x1-x2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点M(﹣1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N的距离的倍.

(1)求曲线E的方程;

(2)已知m≠0,设直线xmy﹣1=0交曲线EAC两点,直线mx+ym=0交曲线EBD两点,若CD的斜率为﹣1时,求直线CD的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次测量中得到的A样本数据如下:82848486868688888888.B样本数据恰好是A样本数据都加2后所得数据,则AB两样本的下列数字特征对应相同的是

A. 众数 B. 平均数 C. 中位数 D. 标准差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品销售价格和销售量与销售天数有关,第x的销售价格(元/百斤),第x的销售量(百斤)(a为常数),且第7天销售该商品的销售收入为2009元.

1)求第10天销售该商品的销售收入是多少?

2)这20天中,哪一天的销售收入最大?为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标坐标系中,曲线的参数方程为为参数),以直角坐标系的原点为极点,以轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为.

(1)求曲线的普通方程;

(2)若与曲线相切,且与坐标轴交于两点,求以为直径的圆的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本大题满分12分)

随着互联网的快速发展,基于互联网的共享单车应运而生,某市场研究人员为了了解共享单车运营公司的经营状况,对该公司最近六个月的市场占有率进行了统计,并绘制了相应的折线图:

(Ⅰ)由折线图可以看出,可用线性回归模型拟合月度市场占有率与月份代码之间的关系,求关于的线性回归方程,并预测公司2017年4月的市场占有率;

(Ⅱ)为进一步扩大市场,公司拟再采购一批单车,现有采购成本分别为元/辆和1200元/辆的两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致单车使用寿命各不相同,考虑到公司运营的经济效益,该公司决定先对这两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命的频数表如下:

经测算,平均每辆单车每年可以带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率,如果你是公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?

参考公式:回归直线方程为,其中.

查看答案和解析>>

同步练习册答案