精英家教网 > 高中数学 > 题目详情
设图是某几何体的三视图,则该几何体的体积为(  )
A.B.
C.D.
D
由题意可知该几何体是由球体和长方体的组合体得到,因此其体积有两部分得到,分别求解为和18,相加得到为D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,在四棱锥中,平面平面为等边三角形,底面为菱形,的中点,
 
(1)求证:平面;
(2) 求四棱锥的体积
(3)在线段上是否存在点,使平面;  若存在,求出的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在梯形中,,,,平面平面,四边形是矩形,,点在线段上.

(1)求证:平面BCF⊥平面ACFE;
(2)当为何值时,∥平面?证明你的结论;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)如图,直三棱柱中, ,中点,若规定主视方向为垂直于平面的方向,则可求得三棱柱左视图的面积为

(Ⅰ)求证:
(Ⅱ)求三棱锥的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知某个几何体的三视图如右侧,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图是一个几何体的三视图,则这个几何体的体积是 (    )
A.27B.30C.33D.36

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=1200
(I)求证:平面ADE⊥平面ABE ;
(II)求二面角A—EB—D的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E、F分别为棱BC、AD的中点.

(Ⅰ)若PD=1,求异面直线PB和DE所成角的余弦值;
(Ⅱ)若二面角P-BF-C的余弦值为,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有一个几何体的三视图及其尺寸如下(单位),则该几何体的表面积及体积为:
A.B.
C.D.以上都不正确

查看答案和解析>>

同步练习册答案