精英家教网 > 高中数学 > 题目详情
4.求下列函数的反函数.
(1)y=$\frac{x-2}{x-1}$.
(2)y=$\sqrt{x}$+1.

分析 用y表示式中的x,然后交换x和y的位置可得反函数.

解答 解:(1)∵y=$\frac{x-2}{x-1}$,∴yx-y=x-2,
∴(y-1)x=y-2,∴x=$\frac{y-2}{y-1}$(y≠1),
式中x和y交换可得原函数的反函数为y=$\frac{x-2}{x-1}$(x≠1);
(2)∵y=$\sqrt{x}$+1,∴$\sqrt{x}$=y-1,
∴x=(y-1)2,y≥1,
式中x和y交换可得原函数的反函数为y=(x-1)2,x≥1.

点评 本题考查反函数的求解,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.定义在R上的函数f(x)满足f(x+6)=f(x).当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2016)=(  )
A.335B.336C.338D.2 016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题“?x∈[-1,2],x2-2x-a≤0”为真命题,则实数a的取值范围是(  )
A.a≥3B.a≤3C.a≥0D.a≤0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知tanα=$\frac{2}{5}$,则$\frac{cosα-3sinα}{2cosα+sinα}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知2sinθ-cosθ=1,3cosθ-2sinθ=a,记数a形成的集合为A,若x∈A,y∈A,则以点P(x,y)为顶点的平面图形可以是.
A.正方形B.五边形C.三角形D.线段

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在x轴上有一定点A(a,0)及一异于点A的动点A′,在y轴上有一定点B(0,b)及一异于点B的动点B′(ab≠0),且A′B′∥AB.求证:直线A′B与AB′的交点在一条确定的直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知A,B,C是△ABC的内角,给出下列五个等式:
①sin2(A+B)+cos2C=1;
②sin(A+B)-sinC=0;
③cos(A+B)+cosC=0;
④sin$\frac{π-A}{4}$=cos$\frac{π+A}{4}$;
⑤tan$\frac{A+B}{2}$•tan$\frac{C}{2}$=1.
其中正确的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设点P(x,y)为圆x2+y2=1上任-点.求下列两个式子的取值范围.
(1)$\frac{y-2}{x+1}$;
(2)x2+y2-2x+6y+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如果两平行直线y=2x-b与y=2x+5之间距离为$\sqrt{5}$,那么b=0或-10.

查看答案和解析>>

同步练习册答案