精英家教网 > 高中数学 > 题目详情
椭圆的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于两点,与抛物线交于两点,且
(1)求椭圆的方程;
(2)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足
为坐标原点),当时,求实数的取值范围。
(1)  (2)

试题分析:(1)设椭圆的半长轴、半短轴、半焦距为,则,且
,又

——————————————————————————————6分
(2)由题,直线斜率存在,设直线 ,联立,消得:
,由,得  ①————————8分
,由韦达定理得


(舍)②
①②得:——————————————————————————11分
的中点
,得代入椭圆方程得:
,即
,即————————15分
点评:根据圆锥曲线的性质求解椭圆的方程,同时能联立方程组来得到交点坐标的关系,结合韦达定理来分析求解,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若点P在曲线C1上,点Q在曲线C2:(x-2)2y2=1上,点O为坐标原点,则的最大值是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线y=x+k与曲线x=恰有一个公共点,则k的取值范围是___________

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆与双曲线有相同的焦点,若的等比中项,的等差中项,则椭圆的离心率是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知椭圆的两焦点是,离心率
(Ⅰ)求椭圆的方程;
(Ⅱ)若在椭圆上,且,求DPF1F2的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交A,B且?若存在,写出该圆的方程,若不存在说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的一个焦点与抛物线的焦点重合,则该椭圆的离心率为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线轴交于点,与直线交于点,椭圆为左顶点,以为右焦点,且过点,当时,椭圆的离心率的范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的一条渐近线方程为,则其离心率为    

查看答案和解析>>

同步练习册答案