精英家教网 > 高中数学 > 题目详情
已知点M(-2,0),N(2,0),动点P满足条件|PM|-|PN|=2
2
.记动点P的轨迹为W.
(1)求W的方程;
(2)若A,B是W上的不同两点,O是坐标原点,求
OA
OB
的最小值.
分析:(1)利用双曲线的定义,可求W的方程;
(2)设点的坐标,利用向量的数量积公式,结合基本不等式,可求
OA
OB
的最小值.
解答:解:(1)据题意M(-2,0),N(2,0),动点P满足条件|PM|-|PN|=2
2

|PM|-|PN|=2
2
<4

∴动点P的轨迹为双曲线的右支,且c=2,a=
2

∴曲线方程为x2-y2=2(x≥
2
);
(2)设A(x1,y1)、B(x2,y2),x1
2
,x2
2
,则x1x2≥2
OA
OB
=x1x2+y1y2≥x1x2-
x12-2
×
x22-2
(x1x2-2)2
=x1x2-|x1x2-2|
=x1x2-(x1x2-2)=2
OA
OB
的最小值是2.
点评:本题考查轨迹方程,考查双曲线的定义,考查向量知识的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点M(-2,0),N(2,0),动点P满足条件||PM|-|PN||=2
2
,记动点P的轨迹为W.
(1)求W的方程;
(2)过N(2,0)作直线l交曲线W于A,B两点,使得|AB|=2
2
,求直线l的方程.
(3)若从动点P向圆C:x2+(y-4)2=1作两条切线,切点为A、B,令|PC|=d,试用d来表示
PA
PB
,若
PA
PB
=
36
5
,求P点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知点M(-2,0),⊙O:x2+y2=1(如图);若过点M的直线l1交圆于P、Q两点,且圆孤PQ恰为圆周的
14
,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(-2,0),N(2,0),动点P满足条件|PM|-|PN|=2
2
.记动点P的轨迹为W.若A,B是W上的不同两点,O是坐标原点.
(1)求W的方程;
(2)若AB的斜率为2,求证
OA
OB
为定值.
(3)求
OA
OB
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•湖北模拟)已知点M(-2,0)、N(2,0),动点P满足条件|PM|-|PN|=2
2
,则动点P的轨迹方程为(  )

查看答案和解析>>

同步练习册答案