精英家教网 > 高中数学 > 题目详情
已知点M是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上的一点,过M作斜率分别为k1,k2的直线,交椭圆于A,B两点,且A,B关于原点对称,则k1k2=-
b2
a2
.类比椭圆的这个性质,设M是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
上的一点,过M作斜率分别为k1,k2的直线,交双曲线于A,B两点,且A,B关于原点对称,则k1•k2=
b2
a2
b2
a2
分析:首先点M半短轴上的顶点,则M作斜率分别为k1,k2的直线,交椭圆于A,B两点,且A,B关于原点对称,设A和B两点坐标为(a,0),(-a,0),于是可得k1k2=-
b2
a2
,类比椭圆性质类推双曲线的性质,设点M实轴上顶点(a,0),则M作斜率分别为k1,k2的直线,交椭圆于A,B两点,且A,B关于原点对称,设A和B两点坐标为为(x,y),(-x,-y),即可求出即k1=
y
x+a
,k2=
y
x-a
,结合双曲线方程化简即可得到k1•k2的值.
解答:解:设点M半短轴上的顶点,则M作斜率分别为k1,k2的直线,交椭圆于A,B两点,且A,B关于原点对称,
设A和B两点坐标为(a,0),(-a,0),即k1=
b
a
,k2=-
b
a
k1k2=-
b2
a2

类比椭圆性质类推双曲线的性质,
设点M实轴上顶点(a,0),则M作斜率分别为k1,k2的直线,交椭圆于A,B两点,且A,B关于原点对称,
设A和B两点坐标为为(x,y),(-x,-y),
即k1=x+a,k2=
y
x-a
,k1•k2=
y
x+a
y
x-a
=
y2
x2-a2

结合
x2
a2
-
y2
b2
=1
化简可得k1•k2=
b2
a2

故答案为
b2
a2
点评:本题主要考查了类比推理的知识点,解答本题的关键是熟练掌握椭圆和双曲线的性质和定义,由椭圆的性质类比推出双曲线的性质,此题难度不大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点M在椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上,以M为圆心的圆与x轴相切于椭圆的右焦点F.
(1)若圆M与y轴相切,求椭圆的离心率;
(2)若圆M与y轴相交于A,B两点,且△ABM是边长为2的正三角形,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知点A是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右顶点,若点C(
3
2
3
2
)
在椭圆上,且满足
OC
OA
=
3
2
.(其中O为坐标原点)
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线l与椭圆交于两点M,N,当
OM
+
ON
=m
OC
,m∈(0,2)
时,求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上一点,F1,F2分别为椭圆的左、右焦点,M为△PF1F2的内心,若S△MPF1=λS△MF1F2-S△MPF2成立,则λ的值为                (  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点M是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上的一点,过M作斜率分别为k1,k2的直线,交椭圆于A,B两点,且A,B关于原点对称,则k1k2=-
b2
a2
.类比椭圆的这个性质,设M是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
上的一点,过M作斜率分别为k1,k2的直线,交双曲线于A,B两点,且A,B关于原点对称,则k1•k2=______.

查看答案和解析>>

同步练习册答案