【题目】已知椭圆的右焦点为,上顶点为,直线的斜率为,且原点到直线的距离为.
(1)求椭圆的标准方程;
(2)若不经过点的直线与椭圆交于两点,且与圆相切.试探究的周长是否为定值,若是,求出定值;若不是,请说明理由.
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且sin2A+sin2B+sin2C=sinAsinB+sinBsinC+sinCsin A.
(1)证明:△ABC是正三角形;
(2)如图,点D在边BC的延长线上,且BC=2CD,AD,求sin∠BAD的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点为平面内一定点,动点为平面内曲线上的任意一点,且满足,过原点的直线交曲线于两点.
(1)证明:直线与直线的斜率之积为定值;
(2)设直线,交直线于、两点,求线段长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列,满足(…).
(1)若,求的值;
(2)若且,则数列中第几项最小?请说明理由;
(3)若(n=1,2,3,…),求证:“数列为等差数列”的充分必要条件是“数列为等差数列且(n=1,2,3,…)”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,若底面是正三角形,侧棱长,、分别为棱、的中点,并且,则异面直线与所成角为______;三棱锥的外接球的体积为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若存在区间,使得,则称函数为“可等域函数”,区间为函数的一个“可等域区间”.给出下列4个函数:
①;②; ③; ④.
其中存在唯一“可等域区间”的“可等域函数”为( )
(A)①②③ (B)②③ (C)①③ (D)②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com