精英家教网 > 高中数学 > 题目详情

【题目】已知实数abc满足a+b+c0a2+b2+c2,求a4+b4+c4的值.

【答案】0.005

【解析】

先对a+b+c0两边平方,从而得出2ab+2ac+2bc=﹣0.1,再对2ab+2ac+2bc=﹣0.1,两边平方,从而得出a2b2+a2c2+b2c20.0025和(a2+b2+c2)20.01,即可得出a4+b4+c4

解:∵a+b+c0

∴(a+b+c)2a2+b2+c2+2ab+2ac+2bc0

a2+b2+c20.1

2ab+2ac+2bc=﹣0.1

∵(2ab+2ac+2bc)24(a2b2+a2c2+b2c2+2a2bc+2ab2c+2abc2)=0.01

2a2bc+2ab2c+2abc22abc(a+b+c)=0

a2b2+a2c2+b2c20.0025①,

(a2+b2+c2)2a4+b4+c4+2(a2b2+a2c2+b2c2)=0.01

由①②得出,a4+b4+c40.005

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下表是20个国家和地区的二氧化碳排放总量及人均二氧化碳排放量.

国家和地区

排放总量/千吨

人均排放量/

国家和地区

排放总量/千吨

人均排放量/

A

10330000

7.4

K

480000

2.0

B

5300000

16.6

L

480000

7.5

C

3740000

7.3

M

470000

3.9

D

2070000

1.7

N

410000

5.3

E

1800000

12.6

O

390000

16.9

F

1360000

10.7

P

390000

6.4

G

840000

10.2

Q

370000

5.7

H

630000

12.7

R

330000

6.2

I

550000

15.7

S

320000

6.2

J

510000

2.6

T

490000

16.6

1)这20个国家和地区人均二氧化碳排放量的中位数是多少?

2)针对这20个国家和地区,请你找出二氧化碳排放总量较少的前15%的国家和地区.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)满足f(x)=f(﹣4﹣x),f(0)=3,若是f(x)的两个零点,且

(Ⅰ)求f(x)的解析式;

(Ⅱ)若x>0,求g(x)=的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)讨论函数的单调性;

(2)若函数时恒成立,求实数的取值范围;

(3)若函数,求证:函数的极大值小于1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形ABCD与正三角形BCE的边长均为2,且平面ABCD⊥平面BCE,平面ABCD,

(I)求证:平面ABCD;

(II)求证:平面ACF⊥平面BDF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解人们对“延迟退休年龄政策”的态度,某部门从年龄在岁到岁的人群中随机调查了人,并得到如图所示的频率分布直方图,在这人中不支持“延迟退休年龄政策”的人数与年龄的统计结果如图所示:

年龄

不支持“延迟退休年龄政策”的人数

(1)由频率分布直方图,估计这人年龄的平均数;

(2)根据以上统计数据填写下面的列联表,据此表,能否在犯错误的概率不超过的前提下,认为以岁为分界点的不同人群对“延迟退休年龄政策”的态度存在差异?

45岁以下

45岁以上

总计

不支持

支持

总计

附:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某幼儿园雏鹰班的生活老师统计2018年上半年每个月的20日的昼夜温差和患感冒的小朋友人数(/人)的数据如下:

温差

患感冒人数

8

11

14

20

23

26

其中.

(Ⅰ)请用相关系数加以说明是否可用线性回归模型拟合的关系;

(Ⅱ)建立关于的回归方程(精确到),预测当昼夜温差升高时患感冒的小朋友的人数会有什么变化?(人数精确到整数)

参考数据:.参考公式:相关系数:,回归直线方程是 ,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在圆 上,点在圆 上,则下列说法错误的是

A. 的取值范围为

B. 取值范围为

C. 的取值范围为

D. ,则实数的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,.

(1)求证:平面平面

(2)当时,直线与平面所成的角能否为?并说明理由.

查看答案和解析>>

同步练习册答案