【题目】已知点,,点为曲线上任意一点且满足.
(1)求曲线的方程;
(2)设曲线与轴交于、两点,点是曲线上异于、的任意一点,直线、分别交直线于点、.求证:以为直线的圆与轴交于定点,并求出点的坐标.
科目:高中数学 来源: 题型:
【题目】已知点和直线,为曲线上一点,为点到直线的距离且满足.
(1)求曲线的轨迹方程;
(2)过点作曲线的两条动弦,若直线斜率之积为,试问直线是否一定经过一定点?若经过,求出该定点坐标;若不经过,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为上的偶函数,当时,.对于结论
(1)当时,;
(2)函数的零点个数可以为;
(3)若函数在区间上恒为正,则实数的范围是
以上说法正确的序号是______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】利用独立性检验的方法调查高中生性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用列联表,由计算可得,参照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5,024 | 6.635 | 7.879 | 10.828 |
得到的正确结论是( )
A. 有99%以上的把握认为“爱好该项运动与性别无关”
B. 有99%以上的把握认为“爱好该项运动与性别有关”
C. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别有关”
D. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中, 为等边三角形,且平面平面, , , .
(Ⅰ)证明: ;
(Ⅱ)若棱锥的体积为,求该四棱锥的侧面积.
【答案】(Ⅰ)证明见解析;(Ⅱ) .
【解析】【试题分析】(I) 取的中点为,连接,.利用等腰三角形的性质和矩形的性质可证得,由此证得平面,故,故.(II) 可知是棱锥的高,利用体积公式求得,利用勾股定理和等腰三角形的性质求得的值,进而求得面积.
【试题解析】
证明:(Ⅰ)取的中点为,连接,,
∵为等边三角形,∴.
底面中,可得四边形为矩形,∴,
∵,∴平面,
∵平面,∴.
又,所以.
(Ⅱ)由面面,,
∴平面,所以为棱锥的高,
由,知,
,
∴.
由(Ⅰ)知,,∴.
.
由,可知平面,∴,
因此.
在中,,
取的中点,连结,则,,
∴ .
所以棱锥的侧面积为.
【题型】解答题
【结束】
20
【题目】已知圆经过椭圆: 的两个焦点和两个顶点,点, , 是椭圆上的两点,它们在轴两侧,且的平分线在轴上, .
(Ⅰ)求椭圆的方程;
(Ⅱ)证明:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三统考结束后,分别从喜欢数学和不喜欢数学的学生中各随机抽取了10人的成绩,分数都是整数,得到如下茎叶图,但是喜欢数学和不喜欢数学的各缺失了一个数据.若已知不喜欢数学的10人成绩的中位数为75,且已知喜欢数学的10人中所缺失成绩是85分以上,但是不高于喜欢数学的10人的平均分.不喜欢数学和喜欢数学缺失的数据分别是____,____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商品在近30天内每件的销售价格p(元)与时间t(天)的函数关系是该商品的日销售量Q(件)与时间t(天)的函数关系是Q=-t+40(0<t≤30,t∈N).
(1)求这种商品的日销售金额的解析式;
(2)求日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com