(2009江西卷理)(本小题满分12分)
在四棱锥中,底面是矩形,平面,,. 以的中点为球心、为直径的球面交于点,交于点.
(1)求证:平面⊥平面;
(2)求直线与平面所成的角的大小;
(3)求点到平面的距离.
解析:方法一:(1)依题设知,AC是所作球面的直径,则AM⊥MC。
又因为P A⊥平面ABCD,则PA⊥CD,又CD⊥AD,
所以CD⊥平面PAD,则CD⊥AM,所以A M⊥平面PCD,
所以平面ABM⊥平面PCD。
(2)由(1)知,,又,则是的中点可得
,
则
设D到平面ACM的距离为,由即,
可求得,
设所求角为,则,。
(1) 可求得PC=6。因为AN⊥NC,由,得PN。所以。
故N点到平面ACM的距离等于P点到平面ACM距离的。
又因为M是PD的中点,则P、D到平面ACM的距离相等,由(2)可知所求距离为。
方法二:
(1)同方法一;
(2)如图所示,建立空间直角坐标系,
则,,, ,,;设平面的一个法向量,由可得:,令,则
。设所求角为,则,
所以所求角的大小为。
(3)由条件可得,.在中,,所以,则, ,所以所求距离等于点到平面距离的,设点到平面距离为则,所以所求距离为。
科目:高中数学 来源: 题型:
(2009江西卷理)如图,正四面体的顶点,,分别在两两垂直的三条射线,,上,则在下列命题中,错误的为
A.是正三棱锥
B.直线∥平面
C.直线与所成的角是
D.二面角为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com