精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆具有如下性质:若是椭圆上关于原点对称的两个点,点是椭圆上的任意一点,当直线的斜率都存在,并记为时,则之积是与点位置无关的定值.试写出双曲线具有的类似的性质,并加以证明.

【答案】MN是双曲线:1上关于原点对称的两个点,点P是双曲线上任意一点,当直线PMPN的斜率都存在,并记为kPMkPN时,那么kPMkPN之积是与点P位置无关的定值.

【解析】

类似的性质为:若MN是双曲线:1上关于原点对称的两个点,点P是双曲线上任意一点,当直线PMPN的斜率都存在,并记为kPMkPN时,那么kPMkPN之积是与点P位置无关的定值.证明如下:

设点M的坐标为(mn),则点N的坐标为(m,-n),其中1.

又设点P的坐标为(xy),由kPMkPN,得kPM·kPN·

y2x2b2n2m2b2代入得kPM·kPN.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得分,回答不正确得分,第三个问题回答正确得分,回答不正确得分.如果一个挑战者回答前两个问题正确的概率都是,回答第三个问题正确的概率为,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题总分不低于分就算闯关成功.

(Ⅰ)求至少回答对一个问题的概率;

(Ⅱ)求这位挑战者回答这三个问题的总得分X的分布列;

(Ⅲ)求这位挑战者闯关成功的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(Ⅰ)当时,证明:

(Ⅱ)当时,讨论函数的极值点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分形理论是当今世界十分风靡和活跃的新理论、新学科。其中,把部分与整体以某种方式相似的形体称为分形。分形是一种具有自相似特性的现象,图象或者物理过程。标准的自相似分形是数学上的抽象,迭代生成无限精细的结构。也就是说,在分形中,每一组成部分都在特征上和整体相似,只仅仅是变小了一些而已,谢尔宾斯基三角形就是一种典型的分形,是由波兰数学家谢尔宾斯基在1915年提出的,按照如下规律依次在一个黑色三角形内去掉小三角形则当时,该黑色三角形内共去掉( )个小三角形

A. 81 B. 121 C. 364 D. 1093

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】偶函数定义域为,其导函数是,当时,有,则关于的不等式的解集为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义域为的周期为3的奇函数,且当时,,则方程在区间上的解得个数是( )

A. B. 6 C. 7 D. 9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个三棱锥的三视图如图所示,其中俯视图是顶角为的等腰三角形,侧视图为直

角三角形,则该三棱锥的表面积为____,该三棱锥的外接球体积为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列说法:

①若某商品的销售量(件)关于销售价格(元/件)的线性回归方程为,当销售价格为10元时,销售量一定为300件;

②线性回归直线一定过样本点中心

③若两个随机变量的线性相关性越强,则相关系数的值越接近于1;

④在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关;

⑤在线性回归模型中,相关指数表示解释变量对于预报变量变化的贡献率,越接近于1,表示回归的效果越好;

其中正确的结论有几个( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,直线l1的参数方程为t为参数),直线l2的参数方程为.设l1l2的交点为P,当k变化时,P的轨迹为曲线C.

(1)写出C的普通方程;

(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3ρ(cosθ+sinθ) =0,Ml3C的交点,求M的极径.

查看答案和解析>>

同步练习册答案