精英家教网 > 高中数学 > 题目详情

凸函数的性质定理为:如果函数f(x)在区间D上是凸函数,则对于区间D内的任意x1,x2,…,xn,有≤f(),已知函数y=sinx在区间(0,π)上是凸函数,则在△ABC中,sinA+sinB+sinC的最大值为________.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:单选题

用数学归纳法证明不等式“”的过程中,由n=k到n=k+1时,不等式的左边(   )

A.增加了一项
B.增加了两项
C.增加了一项,又减少了一项
D.增加了两项,又减少了一项

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

分别表示中的最大与最小者,有下列结论:


③若,则
④若,则
其中正确结论的个数是(   )

A.0 B.1 C.2 D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

(已知集合,且下列三个关系:???有且只有一个正确,则.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

黑白两种颜色的正六形地面砖块按如图的规律拼成若干个图案,则第4个图案中有白色地面砖________________块.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

观察分析下表中的数据:

  多面体
 面数(
 顶点数()
 棱数()
  三棱锥
      5
      6
     9
  五棱锥
      6
      6
     10
  立方体
      6
      8
     12
猜想一般凸多面体中,所满足的等式是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1955年,印度数学家卡普耶卡(D.R.Kaprekar)研究了对四位自然数的一种交换:任给出四位数,用的四个数字由大到小重新排列成一个四位数m,再减去它的反序数n(即将的四个数字由小到大排列,规定反序后若左边数字有0,则将0去掉运算,比如0001,计算时按1计算),得出数,然后继续对重复上述变换,得数,…,如此进行下去,卡普耶卡发现,无论是多大的四位数,只要四个数字不全相同,最多进行k次上述变换,就会出现变换前后相同的四位数t(这个数称为Kaprekar变换的核).通过研究10进制四位数2014可得Kaprekar变换的核为             .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知的周长为,面积为,则的内切圆半径为 .将此结论类比到空间,已知四面体的表面积为,体积为,则四面体的内切球的半径     

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

中,不等式成立;在凸四边形ABCD中,
不等式成立;在凸五边形ABCDE中,不等式成立,…,依此类推,在凸n边形中,不等式_____成立.

查看答案和解析>>

同步练习册答案