精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax3﹣bx+2(a>0)
(1)在x=1时有极值0,试求函数f(x)的解析式;
(2)求f(x)在x=2处的切线方程.

【答案】
(1)解:函数f(x)=ax3﹣bx+2的导数为f′(x)=3ax2﹣b,

在x=1时有极值0,可得f(1)=0,且f′(1)=0,

即为a﹣b+2=0,且3a﹣b=0,

解得a=1,b=3,

可得f(x)=x3﹣3x+2


(2)解:f′(x)=3ax2﹣b,

可得f(x)在x=2处的切线斜率为12a﹣b,

切点为(2,8a﹣2b+2),

即有f(x)在x=2处的切线方程为y﹣(8a﹣2b+2)=(12a﹣b)(x﹣2),

化为(12a﹣b)x﹣y﹣16a+2=0


【解析】(1)求出f(x)的导数,可得f(1)=0,且f′(1)=0,得到a,b的方程,解方程可得a,b的值,进而得到f(x)的解析式;(2)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求切线的方程.
【考点精析】本题主要考查了函数的极值与导数的相关知识点,需要掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥 中,平面 平面 为等边三角形, 分别为 的中点.

(1)求证: 平面 .
(2)求证:平面 平面 .
(3)求三棱锥 的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:x0∈(0,+∞),3 +x0=2016,命题q:a∈(0,+∞),f(x)=|x|﹣ax,(x∈R)为偶函数,那么,下列命题为真命题的是(
A.p∧q
B.(¬p)∧q
C.p∧(¬q)
D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)对任意的x∈(﹣ )满足f′(x)cosx+f(x)sinx>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是 . ① f(﹣ )<f(﹣
f( )<f(
③f(0)>2f(
④f(0)> f(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥P﹣ABCD中,AB⊥AD,AD⊥DC,PA⊥底面ABCD,PA=AD=AB= CD=1,M为PB的中点.
(1)试在CD上确定一点N,使得MN∥平面PAD;
(2)点N在满足(1)的条件下,求直线MN与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判定下列函数的奇偶性.
(1)f(x)=
(2)f(x)=
(3)f(x)=
(4)f(x)=|x+1|+|x-1|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ax3﹣x2+x在区间(0,2)上是单调增函数,则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 )是定义域为R的奇函数.
(1)求k的值;
(2)若 ,不等式 恒成立,求实数t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 表示两条不同的直线, 表示一个平面,给出下列四个命题:
;②
;④ .
其中正确命题的序号是( )
A.①②
B.②③
C.②④
D.①④

查看答案和解析>>

同步练习册答案