精英家教网 > 高中数学 > 题目详情

【题目】哈尔滨市第三中学校响应教育部门疫情期间“停课不停学”的号召,实施网络授课,为检验学生上网课的效果,高三学年进行了一次网络模拟考试.全学年共人,现从中抽取了人的数学成绩,绘制成频率分布直方图(如下图所示).已知这人中分数段的人数比分数段的人数多.

1)根据频率分布直方图,求的值,并估计抽取的名同学数学成绩的中位数;

2)若学年打算给数学成绩不低于分的同学颁发“网络课堂学习优秀奖”,将这名同学数学成绩的样本频率视为概率.

i)估计全学年的获奖人数;

ii)若从全学年随机选取人,求所选人中至少有人获奖的概率.

【答案】1,中位数为;(2)(i人;(ii.

【解析】

1)根据题意得出关于的方程组,可解得的值,再由中位数左边的矩形面积之和为可求得中位数的值;

2)(i)计算得出数学成绩不低于分的同学的频率,乘以可得出全学年的获奖人数;

ii)设所选人中获奖人数为,则,然后利用独立重复试验的概率公式可求得所求事件的概率.

1)依题意,得

在所抽取的人中分数段的人数比分数段的人数多人,

,得

,解得.

设中位数为,前个矩形的面积之和为

个矩形的面积之和为

由题意可得,解得

2)(i)数学成绩不低于分的同学的频率为

所以估计全学年获奖人数为人;

ii)设所选人中获奖人数为,则

所以所选人中至少有人获奖的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四边形是梯形(如图1)E的中点,以为折痕把折起,使点D到达点P的位置(如图2),且.

1)求证:平面平面

2)求点C到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)试讨论的单调性;

2)若函数在定义域上有两个极值点,试问:是否存在实数,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新冠肺炎疫情的控制需要根据大数据进行分析,并有针对性的采取措施.下图是甲、乙两个省份从27日到213日一周内的新增新冠肺炎确诊人数的折线图.根据图中甲、乙两省的数字特征进行比对,下列说法错误的是(

A.27日到213日甲省的平均新增新冠肺炎确诊人数低于乙省

B.27日到213日甲省的单日新增新冠肺炎确诊人数最大值小于乙省

C.27日到213日乙省相对甲省的新增新冠甲省肺炎确诊人数的波动大

D.后四日(210日至13日)乙省每日新增新冠肺炎确诊人数均比甲省多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题,其中正确命题的个数为(

①若样本数据的方差为2,则数据的方差为4

②回归方程为时,变量xy具有负的线性相关关系;

③随机变量X服从正态分布,则

④甲同学所在的某校高三共有5003人,先剔除3人,再按系统抽样的方法抽取容量为200的一个样本,则甲被抽到的概率为.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的左、右焦点分别是,离心率为,左、右顶点分别为.且垂直于轴的直线被椭圆截得的线段长为1.

1)求椭圆的标准方程;

2)经过点的直线与椭圆相交于不同的两点(不与点重合),直线与直线相交于点,求证:三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形中,平面是线段的中点,.

(1)证明:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,下列结论中正确的序号是__________.

的图象关于点中心对称,

的图象关于对称,

的最大值为

既是奇函数,又是周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我校甲、乙、丙三名语文老师和三名数学老师被派往某县城一中和二中支教,其中有一名语文老师和一名数学老师被派到了一中,其它老师都去二中支教,则甲与被派到同一所学校的概率为(

A.B.C.D.

查看答案和解析>>

同步练习册答案