精英家教网 > 高中数学 > 题目详情


在关于人体脂肪含量(百分比)和年龄关系的研究中,得到如下一组数据

年龄
23
27
39
41
45
50
脂肪含量
9.5
17.8
21.2
25.9
27.5
28.2
(Ⅰ)画出散点图,判断是否具有相关关系;

(Ⅱ)通过计算可知
请写出的回归直线方程,并计算出岁和岁的残差.

(Ⅰ)从图中可看出具有相关关系.

(Ⅱ)岁和岁的残差分别为

解析试题分析:(Ⅰ)涉及两个变量,年龄与脂肪含量.
因此选取年龄为自变量,脂肪含量为因变量
作散点图,从图中可看出具有相关关系.
┄┄┄┄┄┄┄┄┄┄┄┄5分

(Ⅱ)的回归直线方程为
.        
时,
时,
所以岁和岁的残差分别为.          10分
考点:本题主要考查散点图,相关性,线性回归直线方程,残差的概念。
点评:中档题,正相关,两个变量变动方向相同,一个变量由大到小或由小到大变化时,另一个变量亦由大到小或由小到大变化。负相关,两个变量变动方向相同,一个变量由大到小或由小到大变化时,另一个变量亦由小到大或由大到小变化。从散点图看,就是自左向右升(降)。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为了研究玉米品种对产量的影响,某农科院对一块试验田种植的一批玉米共10000 株的生长情况进行研究,现采用分层抽样方法抽取50株作为样本,统计结果如下:

 
高茎
矮茎
合计
圆粒
11
19
30
皱粒
13
7
20
合计
24
26
50
 (1) 现采用分层抽样的方法,从这个样本中取出10株玉米,再从这10株玉米中随机选出3株,求选到的3株之中既有圆粒玉米又有皱粒玉米的概率;
(2) 根据对玉米生长情况作出的统计,是否能在犯错误的概率不超过0.050的前提下认为玉米的圆粒与玉米的高茎有关?(下面的临界值表和公式可供参考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
,其中)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.

 
优秀
非优秀
合计
甲班
10
 
 
乙班
 
30
 
合计
 
 
110
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.附: 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

我校高三年级进行了一次水平测试.用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计成绩的分组及各组的频数如下:
[40,50), 2;   [50,60), 3;  [60,70), 10;  [70,80), 15;   [80,90), 12;  [90,100], 8.
(Ⅰ)完成样本的频率分布表;画出频率分布直方图.
(Ⅱ)估计成绩在85分以下的学生比例;
(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)
频率分布表                       频率分布直方图
     

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在研究色盲与性别的关系调查中,调查了男性480人,其中有38人患色盲,调查的520名女性中有6人患色盲.
(1)根据以上数据建立一个2×2列联表;

 
患色盲
不患色盲
总计

 
442
 

6
 
 
总计
44
956
1000
(2)若认为“性别与患色盲有关系”,则出错的概率会是多少?
随机变量
附临界值参考表:
P(K2x0)
0.10
0.05
0.025
0.10
0.005
0.001
x0
2.706
3.841
5.024
6.635
7.879
10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某重点中学的高二英语老师Vivien,为调查学生的单词记忆时间开展问卷调查。发现在回收上来的1000份有效问卷中,有600名同学们背英语单词的时间安排在白天,另外400名学生晚上临睡前背。Vivien老师用分层抽样的方法抽取50名学生进行实验,实验方法是使两组学生记忆40个无意义音节(如XIQGEH),均要求在刚能全部记清时就停止识记,并在8小时后进行记忆测验。不同的是,甲组同学识记结束后一直不睡觉,8小时后测验;乙组同学识记停止后立刻睡觉,8小时后叫醒测验。
乙组同学识记停止8小时后的准确回忆(保持)情况如图。

(1)由分层抽样方法,抽取的50名学生乙组应有几名?
(2)从乙组准确回忆音节数在[8,20)范围内的学生中随机选2人,求两人均准确回忆12个(含12个)以上的概率;
(3)若从是否睡前记忆单词和单词小测能否优秀进行统计,运用22列联表进行独立性检验,经计算K2=4.069,参考下表你能得到什么统计学结论?

P(K≥k0)
 
0.100
 
0.050
 
0.025
 
0.010
 
0.001
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某种产品的广告费用支出(百万)与销售额(百万)之间有如下的对应数据:


2
4
5
6
8

30
40
60
50
70
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计广告费用为10(百万)时,销售收入的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了调查胃病是否与生活规律有关,调查某地540名40岁以上的人得结果如下:

 
患胃病
未患胃病
合计
生活不规律
60
260
320
生活有规律
20
200
220
合计
80
460
540
根据以上数据回答40岁以上的人患胃病与生活规律有关吗?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
某市一家庭今年一月份、二月份和三月份煤气用量和支付费用如下表所示:

月份
用气量(立方米)
煤气费(元)
1
4
4.00
2
25
14.00
3
35
19.00
 
该市煤气收费的方法是:煤气费=基本费十超额费十保险费.
若每月用气量不超过最低额度立方米时,只付基本费元和每户每月定额保险费元;若用气量超过立方米时,超过部分每立方米付元.
(1)根据上面的表格求的值;
(2)记用户第四月份用气为立方米,求他应交的煤气费(元).

查看答案和解析>>

同步练习册答案