精英家教网 > 高中数学 > 题目详情
2.函数$f(x)={2^{\sqrt{\frac{1-x}{x+2}}}}$的定义域是(-2,1].

分析 根据函数成立的条件即可求函数的定义域.

解答 解:要使函数有意义,则$\frac{1-x}{x+2}$≥0,
即-2<x≤1,
即函数的定义域为(-2,1],
故答案为:(-2,1].

点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若函数f(x)是定义在(t,t2-3t-8)上的偶函数,则实数t的值是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数f(x)=sin2x-acosx+2a-1的最大值为为g(a)(a∈R).
(1)求g(a)的表达式;
(2)若认g(a)=-$\frac{7}{4}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列函数中既是增函数又是奇函数的是(  )
A.f(x)=x3(x∈(0,+∞))B.f(x)=sinxC.f(x)=$\frac{lnx}{x}$D.f(x)=x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某公司一年需分x批次购买某种货物,其总运费为$\frac{{{x^2}-2x+201}}{x-1}$万元,一年的总存储费用为x万元,要使一年的总运费与总存储费用之和最小,则批次x等于(  )
A.10B.11C.40D.41

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.集合A={x|1≤x≤3},B={x|x≤a},若A∩B=A,则a的取值范围为a≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列四组数:(1)$\frac{1}{2}$,$\frac{1}{4}$,$\frac{1}{8}$; (2)2,$-2\sqrt{2}$,4;(3)a2,a4,a8;(4)lg2,lg4,lg8;那么(  )
A.(1)是等差数列,(2)是等比数列B.(2)和(3)是等比数列
C.(3)是等比数列,(4)是等差数列D.(2)是等比数列,(4)是等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=$\left\{{\begin{array}{l}{x-5(x≥6)}\\{{x^2}+1(x<6)}\end{array}}\right.$,求f(f(3))的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在公比为q的等比数列{an}中,若5a4=1,a5=5,则q等于(  )
A.$\frac{1}{25}$B.$\frac{1}{5}$C.5D.25

查看答案和解析>>

同步练习册答案