【题目】如图,在三棱柱中,底面,,,分别是棱,的中点,为棱上的一点,且//平面.
(1)求的值;
(2)求证:;
(3)求二面角的余弦值.
【答案】(1);(2)详见解析;(3)二面角的余弦值为.
【解析】
试题分析:(1)求的值,关键是找在的位置,注意到平面,有线面平行的性质,可得,由已知为中点,由平面几何知识可得为中点,从而可得的值;(2)求证:,有图观察,用传统方法比较麻烦,而本题由于底面,所以,,又,这样建立空间坐标比较简单,故以为原点,以分别为轴,建立空间直角坐标系,取,可写出个点坐标,从而得向量的坐标,证即可;(3)求二面角的余弦值,由题意可得向量是平面的一个法向量,只需求出平面的一个法向量,可设平面的法向量,利用,即可求出平面的一个法向量,利用向量的夹角公式即可求出二面角的余弦值.
(1)因为平面
又平面,平面平面,
所以. 3分
因为为中点,且侧面为平行四边形
所以为中点,所以. 4分
(2)因为底面,
所以,, 5分
又,
如图,以为原点建立空间直角坐标系,设,则由可得 6分
因为分别是的中点,
所以. 7分
. 8分
所以,
所以. 9分
(3)设平面的法向量,则
即 10分
令,则,所以. 11分
由已知可得平面的法向量 11分
所以 13分
由题意知二面角为钝角,
所以二面角的余弦值为. 14分
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若对于任意都有成立,求实数的取值范围;
(Ⅲ)若过点可作函数图象的三条不同切线,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设S是实数集R的非空子集,若对任意x,y∈S,都有x+y,x-y,xy∈S,则称S为封闭集.下列命题:①集合S={a+b|a,b为整数}为封闭集;②若S为封闭集,则一定有0∈S;③封闭集一定是无限集;④若S为封闭集,则满足STR的任意集合T也是封闭集.其中真命题是________.(写出所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据中国日报网报道:2017年11月13日,TOP500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席,其中超算全球第一“神威太湖之光”完全使用了国产品牌处理器。为了了解国产品牌处理器打开文件的速度,某调查公司对两种国产品牌处理器进行了12次测试,结果如下(数值越小,速度越快,单位是MIPS)
测试1 | 测试2 | 测试3 | 测试4 | 测试5 | 测试6 | 测试7 | 测试8 | 测试9 | 测试10 | 测试11 | 测试12 | |
品牌A | 3 | 6 | 9 | 10 | 4 | 1 | 12 | 17 | 4 | 6 | 6 | 14 |
品牌B | 2 | 8 | 5 | 4 | 2 | 5 | 8 | 15 | 5 | 12 | 10 | 21 |
(Ⅰ)从品牌A的12次测试中,随机抽取一次,求测试结果小于7的概率;
(Ⅱ)从12次测试中,随机抽取三次,记X为品牌A的测试结果大于品牌B的测试结果的次数,求X的分布列和数学期望E(X);
(Ⅲ)经过了解,前6次测试是打开含有文字和表格的文件,后6次测试是打开含有文字和图片的文件.请你依据表中数据,运用所学的统计知识,对这两种国产品牌处理器打开文件的速度进行评价.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知表1和表2是某年部分日期的天安门广场升旗时刻表:
表1:某年部分日期的天安门广场升旗时刻表
日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 |
1月1日 | 7:36 | 4月9日 | 5:46 | 7月9日 | 4:53 | 10月8日 | 6:17 |
1月21日 | 7:11 | 4月28日 | 5:19 | 7月27日 | 5:07 | 10月26日 | 6:36 |
2月10日 | 7:14 | 5月16日 | 4:59 | 8月14日 | 5:24 | 11月13日 | 6:56 |
3月2日 | 6:47 | 6月3日 | 4:47 | 9月2日 | 5:42 | 12月1日 | 7:16 |
3月22日 | 6:15 | 6月22日 | 4:46 | 9月20日 | 5:50 | 12月20日 | 7:31 |
表2:某年1月部分日期的天安门广场升旗时刻表
日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 |
2月1日 | 7:23 | 2月11日 | 7:13 | 2月21日 | 6:59 |
2月3日 | 7:22 | 2月13日 | 7:11 | 2月23日 | 6:57 |
2月5日 | 7:20 | 2月15日 | 7:08 | 2月25日 | 6:55 |
2月7日 | 7:17 | 2月17日 | 7:05 | 2月27日 | 6:52 |
2月9日 | 7:15 | 2月19日 | 7:02 | 2月28日 | 6:49 |
(1)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率;
(2)甲、乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立,记为这两人中观看升旗的时刻早于7:00的人数,求的 分布列和数学期望;
(3)将表1和表2的升旗时刻化为分数后作为样本数据(如7:31化为),记表2中所有升旗时刻对应数据的方差为,表1和表2中所有升旗时刻对应数据的方差为,判断与的大小(只需写出结论).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com