【题目】在不超过2000的自然数中,任意选取601个数.则这601个数中一定存在两数,其差为3或4或7.
【答案】见解析
【解析】
把不超过2000的自然数分成200组,连续十个自然数为一组.每组为,其中,1,2,…,199.
因为,所以由抽屉原则知,至少有一组数里至少要选取4个数.不妨设是1,2,…,10这一组里应选取4个数.
把1,2,…,10分成4个小组:,,,.
(1)当、、这三个小组中,有一组至少选取2个数时,命题显然成立.
(2)与上述相反,当、、这三个小组中每一组至多选取一个数时,由上面分析知,每一小组只能选取一个数,那么,中只能选取7.
(i)若中选取3或10,则有或.命题成立.
(ii)若中选取6,
a)若在中选取2或9时,有或.成立.
b)若在中选取5时,那么,在中选取1或4或8时,有或或.
命题成立.
科目:高中数学 来源: 题型:
【题目】设函数是定义域为R的奇函数.
(1)求实数k的值;
(2)若,试判断函数的单调性,并求不等式的解集;
(3)若,设,在上的最小值为-1,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线,阅读如图所示的程序框图,若输入的的值为,输出的的值恰为直线在轴上的截距,且.
(1)求直线与的交点坐标;
(2)若直线过直线与的交点,且在轴上的截距是在轴上的截距的2倍,求的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱椎中, 是棱上一点,且,底面是边长为2的正方形, 为正三角形,且平面平面,平面与棱交于点.
(1)求证:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设关于x的方程x2﹣ax﹣1=0和3x2﹣6x+3﹣2a=0的实根分别为x1,x2和x3,x4.若x1<x3<x2<x4,则实数a的取值范围为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知距离为的、两点在直线的同侧,且、到直线的距离分别为、.问能否作出经过、两点且与直线相切的圆?若能,请写出作法,画图并求出圆的半径;若不能,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x﹣1)|x﹣a|﹣x﹣2a(x∈R).
(1)若a=﹣1,求方程f(x)=1的解集;
(2)若 ,试判断函数y=f(x)在R上的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC﹣A1B1C1,中,点M是棱BC的中点.
(2)求证:A1C∥平面AB1M;
(2)如果AB=AC,求证AM⊥平面BCC1B1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com