精英家教网 > 高中数学 > 题目详情

( 12分)设函数
(1)写出定义域及的解析式;
(2)设,讨论函数的单调性;
(3)若对任意,恒有成立,求实数的取值范围.

解:(1)的定义域为
(2)①当时,,所以上为增函数;
②当 ,由
上为增函数,在上是减函数.
(3)①当时,由(1)知,对任意,恒有 ;
②当时,由(1)知,上是减函数,在上是增函数,
,则
③当时,对任意,恒有,    得
综上,当且仅当时,若对任意恒有成立.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分10分)一艘轮船在航行中的燃料费和它的速度的立方成正比,已知在速度为每小时10公里时的燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问此轮船以何种速度航行时,能使行驶每公里的费用总和最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,对于任意的,函数在区间上总存在极值?
(Ⅲ)当时,设函数,若在区间上至少存在一个
使得成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)已知是定义在上的奇函数,当时,,其中是自然对数的底数.
(1)求的解析式;
(2)求的图象在点处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时,都取得极值。
(1)求的值;
(2)若,求的单调区间和极值;
(3)若对都有恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)设函数.          
(1)对于任意实数,恒成立,求的最大值;
(2)若方程有且仅有一个实根,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)已知函数f(x)=x2-(1+2a)x+alnx(a为常数).
(1)当a=-1时,求曲线y=f(x)在x=1处切线的方程;
(2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)已知函数f(x)=,g(x)=alnx,a∈R.
(1)若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;
(2)设函数h(x)=f(x)-g(x),当h(x)存在最小值时,求其最小值φ(a)的解析式;
(3)对(2)中的φ(a),证明:当a∈(0,+∞)时,φ(a)≤1

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数,则下面结论错误的个数是(   )
(1)处连续  (2) (3)    (4)

A.0 B.1 C.2 D.3

查看答案和解析>>

同步练习册答案