精英家教网 > 高中数学 > 题目详情
8.若函数g(x)是函数y=logax(a>0,且a≠1)的反函数,且g(1)=2,则g(2)=4.

分析 根据同底的指数函数和对数函数互为反函数,可得g(x)=ax,(a>0,且a≠1),进而得到答案.

解答 解:∵函数g(x)是函数y=logax(a>0,且a≠1)的反函数,
∴g(x)=ax,(a>0,且a≠1),
又∵g(1)=2,
∴a=2,
∴g(2)=4,
故答案为:4

点评 本题考查的知识点是对数函数的图象和性质,反函数,指数函数的图象和性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知函数f(x+2)是定义在(-∞,+∞)上的奇函数.当x∈(-∞,2)时,f(x)=x-x4,则当x∈(2,+∞)时,f(x)=(x-4)4-(4-x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$\vec a$=(1,2),$\vec b$=(-4,2),则$|{\overrightarrow a+\overrightarrow b}|$等于(  )
A.25B.5C.7D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2-4x+3,g(x)=mx+5-2m,
(1)求y=f(x)在区间[0,a](a>0)上的最小值
(2)若对任意的x1∈[1,4],都有x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知实数a1,a2,a3,a4各不相等,若集合{x|x=ai+aj,1≤i≤j}={1,2,3,5,6,7},则a12+a22+a32+a42=21.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求函数y=log${\;}_{\frac{1}{2}}$(x2-6x+8)的值域、单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=log${\;}_{\frac{1}{2}}$x.
(1)解不等式:f(x2-x-2)+1>-log2(x-1);
(2)设函数g(x)=[$\frac{1}{2}$f(x)]2-f($\sqrt{x}$)+5,求x∈[2,4]时,函数g(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an}的前n项和为Sn,向量$\overrightarrow{OP}$=(n,$\frac{{S}_{n}}{n}$),$\overrightarrow{O{P}_{1}}$=(m,$\frac{{S}_{m}}{m}$),$\overrightarrow{O{P}_{2}}$=(k,$\frac{{S}_{k}}{k}$),且$\overrightarrow{OP}$=λ$\overrightarrow{O{P}_{1}}$+μ$\overrightarrow{O{P}_{2}}$,已知m,n,k∈N*且互不相等,则用m,n,k表示μ=(  )
A.μ=$\frac{k-n}{k-m}$B.μ=$\frac{n-m}{n-k}$C.μ=$\frac{n-m}{k-m}$D.μ=$\frac{k-m}{k-n}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某学校有教职工400名,从中选出40名教职工组成教工代表大会,每位教职工当选的概率是$\frac{1}{10}$,其中正确的是(  )
A.10个教职工中,必有1人当选
B.每位教职工当选的可能性是$\frac{1}{10}$
C.数学教研组共有50人,该组当选教工代表的人数一定是5
D.以上说法都不正确

查看答案和解析>>

同步练习册答案