精英家教网 > 高中数学 > 题目详情
已知|
a
|=1,|
b
|=2,(2
a
-3
b
)•(2
a
+
b
)=-12.
(1)求
a
b
的夹角θ;                 
(2)求|
a
+2
b
|的值.
考点:平面向量数量积的运算
专题:平面向量及应用
分析:(1)展开已知的等式,得到-12=4
a
2
-3
b
2
-4
a
b
,利用已知以及数量积公式,模与向量平方的关系解答;
(2)利用向量的平方与模的平方相等解答.
解答: 解:(1)由已知|
a
|=1,|
b
|=2,(2
a
-3
b
)•(2
a
+
b
)=-12=4
a
2
-3
b
2
-4
a
b
=4-12-4×1×2×cosθ,解得cosθ=
1
2
,所以θ=60°.
(2)|
a
+2
b
|2=
a
2
+4
a
b
+4
b
2
=1+4×1×2×
1
2
+16=21,所以|
a
+2
b
|=
21
点评:本题考查了向量的数量积,模;向量求模的题目中通过向量的平方等于模的平方解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知|
a
|=4,|
b
|=3,
a
b
的夹角θ为60°,求:
(1)(
a
+2
b
)•(2
a
-
b
)的值;
(2)|2
a
-
b
|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列四个命题:
①U为全集,A、B是集合,则“存在集合C使得A⊆C,B⊆∁UC”是“A∩B=∅”的充要条件;
②已知命题p:若x>y,则-x<-y,命题q:若x>y,则x2>y2,命题p∧(¬q)为真命题;
③命题“对任意x∈R,都有x2≥0”是否定为“不存在x∈R,都有x2<0”;
④一物体沿直线以v=2t+3(t的单位:s,v的单位:m/s)的速度运动,则物体在3~5s间进行的路程是22m,其中真命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

用C(A)表示非空集合A中元素的个数,定义A*B=
C(A)-C(B)
C(B)-C(A)
C(A)≥C(B)
C(A)<C(B)
,若A={1,2},B={x|(x2+ax)(x2+ax+2)=0},且A*B=1,设实数a的所有可能取值构成集合S,则C(S)=(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

当x∈(1,+∞)时,用数学归纳法证明:?n∈N*,ex-1
xn
n!
.(n!=1•2•3•…•(n-1)n)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosα,sinα),
b
=(cosβ,sinβ),0<α<β<π.
(1)若
a
b
,求|
a
-
b
|的值;
(2)设 
c
=(0,1),若
a
+
b
=
c
,求α,β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的偶函数在区间[0,1]上是增函数,且满足f(x+1)f(x)=2.则(  )
A、f(-
5
2
)<f(0)<f(3)
B、f(0)<f(-
5
2
)<f(3)
C、f(0)<f(3)<f(-
5
2
D、f(3)<f(0)<f(-
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(x,3),
b
=(3,-1),且
a
b
,则x等于(  )
A、-1B、-9C、9D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
32+
5
+
32-
5

查看答案和解析>>

同步练习册答案