精英家教网 > 高中数学 > 题目详情

已知锐角三角形ABC中,|数学公式|=4,|数学公式|=1,三角形的面积为数学公式,则数学公式的值为


  1. A.
    4
  2. B.
    -4
  3. C.
    2
  4. D.
    -2
D
分析:由已知条件知,要求用数量积的定义求,还需要求向量夹角的余弦值
解答:三角形ABC的面积S=||•||•sinA=×4×1×sinA=
∴sinA=
又∵三角形ABC是锐角三角形
∴由平方关系的cosA=

=4×1×(-cosA)
=4×1×(
=-2
故选D
点评:本题考查用定义求向量的数量积,要特别注意两个向量的夹角
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知锐角三角形ABC中,sin(A+B)=
3
5
,sin(A-B)=
1
5

(Ⅰ)求证:tanA=2tanB;
(Ⅱ)设AB=3,求AB边上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角三角形△ABC内角A、B、C对应边分别为a,b,c.tanA=
3
bc
b2+c2-a2

(Ⅰ)求A的大小;
(Ⅱ)求cosB+cosC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角三角形ABC中,定义向量
m
=(sinB,-
3
),
n
=(cos2B,4cos2
B
2
-2),且
m
n

(1)求函数f(x)=sin2xcosB-cos2xsinB的单调减区间;
(2)若b=1,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角三角形ABC中内角A、B、C的对边分别为a,b,c,a2+b2=6abcosC,且sin2C=2sinAsinB.
(1)求角C的值;
(2)设函数f(x)=sin(ωx-
π
6
)-cosω
x
 
 
(ω>0)
,且f(x)图象上相邻两最高点间的距离为π,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•卢湾区二模)(文)已知锐角三角形ABC的三边为连续整数,且角A、B满足A=2B.
(1)当
π
5
<B<
π
4
时,求△ABC的三边长及角B(用反三角函数值表示);
(2)求△ABC的面积S.

查看答案和解析>>

同步练习册答案