精英家教网 > 高中数学 > 题目详情

【题目】若二次函数g(x)ax2bxc(a≠0)满足g(x1)2xg(x),且g(0)1.

1)求g(x)的解析式;

2)若在区间[1,1]上,不等式g(x)-t>2x恒成立,求实数t的取值范围.

【答案】1;(2

【解析】

1)根据g(0)1,得,根据建立方程组即可求解;

2)分离参数,将问题转化为在区间[1,1]上,恒成立,即可求解.

1)由题:二次函数g(x)ax2bxc(a≠0)满足g(x1)2xg(x)

g(0)1,即

所以

整理得:

所以,解得:

所以

2)在区间[1,1]上,不等式g(x)-t>2x恒成立,

即在区间[1,1]上,恒成立,

函数单调递减,所以的最小值为-1

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】东西向的铁路上有两个道口,铁路两侧的公路分布如图,位于的南偏西,且位于的南偏东方向,位于的正北方向,,处一辆救护车欲通过道口前往处的医院送病人,发现北偏东方向的处(火车头位置)有一列火车自东向西驶来,若火车通过每个道口都需要分钟,救护车和火车的速度均为.

1)判断救护车通过道口是否会受火车影响,并说明理由;

2)为了尽快将病人送到医院,救护车应选择中的哪个道口?通过计算说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三个内角所对的边分别为,设.

1)若,求的夹角

2)若,求周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某湿地公园的鸟瞰图是一个直角梯形,其中:1千米,千米,公园内有一个形状是扇形的天然湖泊,扇形长为半径,弧为湖岸,其余部分为滩地,BD点是公园的进出口.公园管理方计划在进出口之间建造一条观光步行道:线段线段,其中Q在线段上(异于线段端点),与弧相切于P点(异于弧端点]根据市场行情段的建造费用是每千米10万元,湖岸段弧的建造费用是每千米万元(步行道的宽度不计),设弧度观光步行道的建造费用为万元.

1)求步行道的建造费用关于的函数关系式,并求其走义域;

2)当为何值时,步行道的建造费用最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数处的切线方程,并求函数的最大值;

(2)若函数的两个零点分别为,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的左、右焦点分别为且椭圆上存在一点P,满足.

1)求椭圆C的标准方程;

2)已知AB分别是椭圆C的左、右顶点,过的直线交椭圆CMN两点,记直线的交点为T,是否存在一条定直线l,使点T恒在直线l上?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五面体中,侧面是正方形,是等腰直角三角形,点是正方形对角线的交点.

(1)证明:平面

(2)若侧面与底面垂直,求五面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD中,底面ABCD是矩形,PA⊥底面ABCDPAAB1AD,点FPB的中点,点E在边BC上移动.

(1)EBC的中点时,试判断EF与平面PAC的位置关系,并说明理由;

(2)求证:无论点EBC边的何处,都有

(3)为何值时,与平面所成角的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|2x1|a

1)当a1时,解不等式fx)>x+1

2)若存在实数x,使得fxfx+1),求实数a的取值范围.

查看答案和解析>>

同步练习册答案