【题目】若二次函数g(x)=ax2+bx+c(a≠0)满足g(x+1)=2x+g(x),且g(0)=1.
(1)求g(x)的解析式;
(2)若在区间[-1,1]上,不等式g(x)-t>2x恒成立,求实数t的取值范围.
科目:高中数学 来源: 题型:
【题目】东西向的铁路上有两个道口、,铁路两侧的公路分布如图,位于的南偏西,且位于的南偏东方向,位于的正北方向,,处一辆救护车欲通过道口前往处的医院送病人,发现北偏东方向的处(火车头位置)有一列火车自东向西驶来,若火车通过每个道口都需要分钟,救护车和火车的速度均为.
(1)判断救护车通过道口是否会受火车影响,并说明理由;
(2)为了尽快将病人送到医院,救护车应选择、中的哪个道口?通过计算说明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某湿地公园的鸟瞰图是一个直角梯形,其中:,,,长1千米,长千米,公园内有一个形状是扇形的天然湖泊,扇形以长为半径,弧为湖岸,其余部分为滩地,B,D点是公园的进出口.公园管理方计划在进出口之间建造一条观光步行道:线段线段弧,其中Q在线段上(异于线段端点),与弧相切于P点(异于弧端点]根据市场行情,段的建造费用是每千米10万元,湖岸段弧的建造费用是每千米万元(步行道的宽度不计),设为弧度观光步行道的建造费用为万元.
(1)求步行道的建造费用关于的函数关系式,并求其走义域;
(2)当为何值时,步行道的建造费用最低?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:()的左、右焦点分别为,且椭圆上存在一点P,满足.,
(1)求椭圆C的标准方程;
(2)已知A,B分别是椭圆C的左、右顶点,过的直线交椭圆C于M,N两点,记直线,的交点为T,是否存在一条定直线l,使点T恒在直线l上?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.
(1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(2)求证:无论点E在BC边的何处,都有;
(3)当为何值时,与平面所成角的大小为45°.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣1|﹣a.
(1)当a=1时,解不等式f(x)>x+1;
(2)若存在实数x,使得f(x)f(x+1),求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com