精英家教网 > 高中数学 > 题目详情
2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点到左焦点的最大距离是$\sqrt{3}+\sqrt{2}$,且点M(1,e)在椭圆C上,其中e为椭圆C的离心率,A,B是椭圆C上的两点,且|AB|=$\sqrt{3}$.
(1)求椭圆C的方程;
(2)求△AOB面积的取值范围.

分析 (1)由已知得$a+c=\sqrt{3}+\sqrt{2}$,点M(1,e)代入椭圆,由此能求出椭圆方程.
(2)分类讨论,设出直线方程,代入椭圆方程,利用韦达定理,表示出面积,利用配方法可求最值,从而可得结论.

解答 解:(1)∵椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点到左焦点的最大距离是$\sqrt{3}+\sqrt{2}$,
且点M(1,e)在椭圆C上,其中e为椭圆C的离心率,
∴$\left\{\begin{array}{l}{a+c=\sqrt{3}+\sqrt{2}}\\{\frac{1}{{a}^{2}}+\frac{{c}^{2}}{{a}^{2}{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=$\sqrt{3}$,c=$\sqrt{2}$,b=1,
∴椭圆C的方程为$\frac{{x}^{2}}{3}+{y}^{2}=1$.
(2)设A(x1,y1),B(x2,y2),△ABO的面积为S.
如果AB⊥x轴,由对称性不妨记A的坐标为($\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$),此时S=$\frac{1}{2}$•$\frac{\sqrt{3}}{2}$•$\sqrt{3}$=$\frac{3}{4}$,
同理,如果AB⊥y轴,由对称性不妨记A的坐标为($\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$),此时S=$\frac{1}{2}$•$\frac{\sqrt{3}}{2}$•$\sqrt{3}$=$\frac{3}{4}$;
∴△AOB面积S≥$\frac{3}{4}$.
如果AB不垂直于x轴,设直线AB的方程为y=kx+m,代入椭圆方程,可得x2+3(kx+m)2=3,
即(1+3k2)x2+6kmx+3m2-3=0,又△=36k2m2-4(1+3k2) (3m2-3)>0,
∴x1+x2=-$\frac{6km}{1+3{k}^{2}}$,x1x2=$\frac{3{m}^{2}-3}{1+3{k}^{2}}$,
∴(x1-x22=(x1+x22-4x1x2=$\frac{12(1+3{k}^{2}-{m}^{2})}{(1+3{k}^{2})^{2}}$,①
由|AB|=$\sqrt{1+{k}^{2}}$•|x1-x2|及|AB|=$\sqrt{3}$得(x1-x22=$\frac{3}{1+{k}^{2}}$,②
结合①,②得m2=(1+3k2)-$\frac{(1+3{k}^{2})^{2}}{4(1+{k}^{2})}$.
又原点O到直线AB的距离为$\frac{|m|}{\sqrt{1+{k}^{2}}}$,
∴S=$\frac{1}{2}$•$\frac{|m|}{\sqrt{1+{k}^{2}}}$•$\sqrt{3}$,
∴S2=$\frac{3}{4}$•$\frac{{m}^{2}}{1+{k}^{2}}$=$\frac{3}{16}$($\frac{1+3{k}^{2}}{1+{k}^{2}}$-2)2+$\frac{3}{4}$≤$\frac{3}{4}$,
故S≤$\frac{\sqrt{3}}{2}$,当且仅当$\frac{1+3{k}^{2}}{1+{k}^{2}}$=2,即k=±1时上式取等号.
综上,△AOB面积的取值范围是[$\frac{3}{4}$,$\frac{\sqrt{3}}{2}$].

点评 本题考查椭圆的几何性质,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知椭圆M过定点B(-4,0),且和定圆(x-4)2+y2=16相切,则动圆圆心M的轨迹方程为$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x≤-2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)是定义在R上的奇函数,且当x<0时,f(x)=2x-1,若f(a)=3,则实数a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知{an}是正项等差数列,{an}的前n项和记为Sn,a1=3,a2•a3=S5
(1)求{an}的通项公式;
(2)设数列{bn}的通项为bn=$\frac{1}{{S}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x∈R,“x=1”是:“x-1=$\sqrt{x-1}$”的(  )
A.必要不充分条件B.充分不必要条件
C.既不充分也不必要条件D.充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求中心在原点,对称轴为坐标轴,且满足下列条件的双曲线方程:
(1)双曲线过点(3,9$\sqrt{2}$),离心率e=$\frac{\sqrt{10}}{3}$;
(2)双曲线C的右焦点为(2,0),右顶点为($\sqrt{3}$,0);
(3)与双曲线x2-2y2=2有共同的渐近线,且经过点(2,-2);
(4)过点P(2,-1),渐近线方程是y=±3x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC的内角A、B、C所对应的边分别是a、b、c,$\overrightarrow{p}$=(asin2C,c),$\overrightarrow{q}$=($\frac{1}{sin(A+B)}$,1),且$\overrightarrow{p}$•$\overrightarrow{q}$=2b.
(1)求角A的大小;
(2)若a=1,求△ABC的周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设向量$\overrightarrow{a}$=(-3,2),$\overrightarrow{b}$=(cosα,-$\frac{1}{3}$)(0°<α<180°),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则角α为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若直线l1:ax+2y+6=0与直线l2:x+(a-1)y+(a2-1)=0平行而不重合,则a等于(  )
A.-1或2B.-1C.2D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案