精英家教网 > 高中数学 > 题目详情

【题目】已知函数在一个周期内的图象如图所示.

1)求函数的解析式.

2)求方程的解的个数.

【答案】1;(263

【解析】

1)由题图,知,从而求得,易知点是五点作图法中的第五点,可得

2)在同一平面直角坐标系中作函数和函数的图象,结合图象的交点个数即可求出答案.

解:(1)由题图,知

由函数图象过点,得,即,又,∴

易知点是五点作图法中的第五点,

,则

2)在同一平面直角坐标系中作函数和函数的图象如图所示,

因为的最大值为2,令,得

,得

,且

∴在区间内有31个形如的区间,

在每个区间上的图象都有两个交点,

故这两个函数的图象在上有(个)交点,

另外,两函数的图象在上还有一个交点,

所以方程共有63个实数解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如果一个正整数n在三进制下的各位数字之和能被3整除,则称n为“恰当数”。求S={1,2,...,2005}中全体恰当数之和。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我市正在创建全国文明城市,某高中为了解学生的创文知晓率,按分层抽样的方法从“表演社”、“演讲社”、“围棋社”三个活动小组中随机抽取了6人进行问卷调查,各活动小组人数统计如下图:

(1)从参加问卷调查的6名学生中随机抽取2名,求这2名学生来自同一小组的概率;

(2)从参加问卷调查的6名学生中随机抽取3名,用表示抽得“表演社”小组的学生人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将编号为1,2,…,9的九个小球随机放置在圆周的九个等分点上,每个等分点上各有一个小球.设圆周上所有相邻两球号码之差的绝对值之和为S.求使S达到最小值的放法的概率.注:如果某种放法经旋转或镜面反射后可与另一种放法重合,则认为是相同的放法.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学的父亲决定今年夏天卖西瓜赚钱,根据去年6月份的数据统计连续五天内每天所卖西瓜的个数与温度之间的关系如下表:

温度

32

33

35

37

38

西瓜个数

20

22

24

30

34

(1)求这五天内所卖西瓜个数的平均值和方差;

(2)求变量之间的线性回归方程,并预测当温度为时所卖西瓜的个数.

附:(精确到).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018831日,十三届全国人大常委会第五次会议表决通过了关于修改个人所得税法的决定,这是我国个人所得税法自1980年出台以来第七次大修为了让纳税人尽早享受减税红利,在过渡期对纳税个人按照下表计算个人所得税,值得注意的是起征点变为5000元,即如表中“全月应纳税所得额”是纳税者的月薪金收入减去5000元后的余额.

级数

全月应纳税所得额

税率

1

不超过3000元的部分

2

超过3000元至12000元的部分

3

超过12000元至25000元的部分

某企业员工今年10月份的月工资为15000元,则应缴纳的个人所得税为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在函数定义域内,若存在区间,使得函数值域为,则称此函数为“档类正方形函数”,已知函数.

(1)当时,求函数的值域;

(2)若函数的最大值是1,求实数的值;

(3)当时,是否存在,使得函数为“1档类正方形函数”?若存在,求出实数的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的导数.

1)若,求处的切线方程;

2)求的单调区间;

3)若方程有两个不等的实根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上的两点满足,点在抛物线对称轴的左右两侧,且的横坐标小于零,抛物线顶点为,焦点为.

(1)当点的横坐标为2,求点的坐标;

(2)抛物线上是否存在点,使得),若请说明理由;

(3)设焦点关于直线的对称点是,求当四边形面积最小值时点的坐标.

查看答案和解析>>

同步练习册答案