【题目】已知棱长为3的正方体ABCD﹣A1B1C1D1中,M是BC的中点,点P是侧面DCC1D1内(包括边界)的一个动点,且满足∠APD=∠MPC.则当三棱锥P﹣BCD的体积最大时,三棱锥P﹣BCD的外接球的表面积为_____.
【答案】21π
【解析】
由题意得三角形相似,再借助函数求最大值,求出的位置在棱上,且时三棱锥的体积最大,然后由三棱锥为一条侧棱垂直于底面的三棱锥,它的外接球的球心是过底面外接圆的圆心做垂直于底面的直线与中截面的交点,而底面为直角三角形,所以底面外接圆的圆心为斜边的中点,且半径为斜边的一半,根据底面外接圆的半径与球的半径和三棱锥的高的一半构成直角三角形,由题意求出外接球的半径,求出外接球的表面积.
由题意得是的中点,点是侧面内(包括边界)的一个动点,
且满足
,,及.
设,,,,
化简得,当时,,
所以点在上,且时三棱锥的体积最大,
这时底面外接圆圆心为斜边的中点,球心为过垂直于底面的直线与中截面的交点,
则,底面半径,设球的半径,则,,
所以三棱锥的外接球的表面积为,
故答案为:.
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率为,椭圆:经过点.
(1)求椭圆的标准方程;
(2)设点是椭圆上的任意一点,射线与椭圆交于点,过点的直线与椭圆有且只有一个公共点,直线与椭圆交于,两个相异点,证明:面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某绿色有机水果店中一款有机草莓味道鲜甜,店家每天以每斤元的价格从农场购进适量草莓,然后以每斤元的价格出售,如果当天卖不完,剩下的草莓由果汁厂以每斤元的价格回收.
(1)若水果店一天购进斤草莓,求当天的利润(单位:元)关于当天需求量(单位:斤,)的函数解析式;
(2)水果店记录了天草莓的日需求量(单位:斤),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 14 | 22 | 14 | 16 | 15 | 13 | 6 |
①假设水果店在这天内每天购进斤草莓,求这天的日利润(单位:元)的平均数;
②若水果店一天购进斤草莓,以天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】两圆(圆心,半径),与(圆心,半径)不是同心圆,方程相减(消去二次项)得到的直线叫做圆 与圆的根轴;
(1)求证:当与相交于A,B两点时,所在直线为根轴;
(2)对根轴上任意点P,求证:;
(3)设根轴与交于点H,,求证:H分的比;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司租赁甲、乙两种设备生产、两类产品,甲种设备每天能生产类产品件和类产品件,乙种设备每天能生产类产品件和类产品件.已知设备甲每天的租赁费为元,设备乙每天的租赁费为元,现该公司至少要生产类产品件,类产品件,求所需租赁费最少为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆(),以椭圆内一点为中点作弦,设线段的中垂线与椭圆相交于, 两点.
(Ⅰ)求椭圆的离心率;
(Ⅱ)试判断是否存在这样的,使得, , , 在同一个圆上,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com