精英家教网 > 高中数学 > 题目详情
17.下列命题中,错误的是(  )
A.一条直线与两个平行平面中的一个相交,则必与另一个相交
B.平行于同一个平面的两个平面平行
C.一个平面与两个平行平面相交,交线平行
D.平行于同一条直线的两个平面平行

分析 由直线与平面相交的性质,知A正确;由平面平行的判定定理,知B正确;由面面平行的性质可得C正确;举例说明D错误.

解答 解:由直线与平面相交的性质,知一条直线与两个平行平面中的一个相交,则必与另一个平面相交,故A正确;
由平面平行的判定定理知,平行于同一平面的两个不同平面平行,故B正确;
由两平面平行的性质知:一个平面与两个平行平面相交,交线平行,C正确;
平行于同一直线的两个平面有两种位置关系,可能平行,也可能相交,D错误.
故选:D.

点评 本题考查命题的真假判断与应用,考查空间中直线与直线、直线与平面间的位置关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.函数f(x)=x2-2x-3在[0,3)上的值域为[-4,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知Sn是数列{an}的前n项和,向量$\overrightarrow a=({a_n}-1,-2),\overrightarrow b=(4,{S_n})$满足$\overrightarrow a⊥\overrightarrow b$,则a2015=22015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下面给出的四个命题中:
①若m=-2,则直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直;
②命题“?x∈R,使得x2+3x+4=0”的否定是“?x∈R,都有x2+3x+4≠0”;
③将函数y=sin2x的图象向右平移$\frac{π}{3}$个单位,得到函数$y=sin({2x-\frac{π}{6}})$的图象.
其中是真命题的有①②(将你认为正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知全集U=R,集合A={x|4x+a>0},B={x|x2-2x-3>0}.
(1)当a=4时,求集合A∩B;
(2)若A∩(∁UB)=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题中的假命题是(  )
A.?x∈R,x3<0
B.在斜二测画法中,直观图的面积是原图形面积的4$\sqrt{2}$
C.“a>0”是“|a|>0”充分不必要的条件
D.关于x的不等式x2-2ax-8a2<0(a>0)的解集为(x1,x2),且x2-x1=15,则$a=\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.下列命题中,
①方程$\frac{{x}^{2}}{4-t}$+$\frac{{y}^{2}}{t-1}$=1表示曲线C可能为圆;
②$\left\{\begin{array}{l}{x>1}\\{y>2}\end{array}\right.$是$\left\{\begin{array}{l}{x+y>3}\\{xy>2}\end{array}\right.$的充要条件;
③一个命题的逆命题为真,它的否命题也一定为真;
④“9<k<15”是“方程$\frac{{x}^{2}}{15-k}$+$\frac{{y}^{2}}{k-9}$=1表示椭圆”的充要条件.
⑤设P是以F1、F2为焦点的双曲线一点,且$\overrightarrow{{PF}_{1}}$•$\overrightarrow{{PF}_{2}}$=0,若△PF1F2的面积为9,则双曲线的虚轴长为6;其中真命题的序号是①③⑤(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.有下列叙述:
①y=x2-2|x|-3的递增区间为[0,+∞);
②函数f(x)的定义域为R,若f(x+y)=f(x)+f(y),f(8)=3,则f(2)=$\frac{3}{4}$;
③函数y=f(x)是R上的偶函数,对?x∈R,都有f(x+6)=f(x)+f(3)成立,当x1、x2∈[0,3]且x1≠x2时,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,则函数x=-3是函数y=f(x)图象的一条对称轴;
④已知函数f(x)=x|x|,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)成立,则实数t的取值范围是[$\sqrt{2}$,+∞).
其中所有正确叙述的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在空间四边形ABCD中,E,F,G分别在棱AB,BC,CD上(与顶点不重合).
(1)若AC∥平面EFG,且BD∥平面EFG,$\frac{BE}{AE}=\frac{3}{4}$,求$\frac{FG}{BD}$;
(2)若E,F,G分别是棱AB,BC,CD的中点,试分析直线AC,BD与平面EFG的关系,并证明.

查看答案和解析>>

同步练习册答案