精英家教网 > 高中数学 > 题目详情

【题目】已知定义域为R的奇函数f(x)满足f(log2x)=
(1)求函数f(x)的解析式;
(2)判断并证明f(x)在定义域 R的单调性;
(3)若对任意的t∈R,不等式f(t2﹣2t)+f(3t2﹣k)<0恒成立,求实数k的取值范围.

【答案】
(1)解:∵f(log2x)= ,∴令t=log2x,

则x=2t,代入原式中:f(t)= ,则f(x)=

又∵f(x)在R上是奇函数,∴f(0)=0,解得a=1.

则f(x)=


(2)解:由(1)知

设x1<x2,则f(x1)﹣f(x2)= =

∵函数y=2x在R上是增函数且x1<x2

>0.

又( +1)( +1)>0,

∴f(x1)﹣f(x2)>0,即f(x1)>f(x2).

∴f(x)在(﹣∞,+∞)上为减函数


(3)解:∵f(x)是奇函数,

从而不等式:f(t2﹣2t)+f(3t2﹣k)<0等价于f(t2﹣2t)<﹣f(3t2﹣k)=f(k﹣3t2),

∵f(x)为减函数,由上式推得:t2﹣2t>k﹣3t2

即对一切t∈[1,2]有:4t2﹣2t﹣k>0,k<4t2﹣2t,

当t=1时最小,则{k|k<2}


【解析】(1)由已知利用换元法求得函数解析式;(2)直接利用函数单调性的定义证明;(3)由(2)结合函数的奇偶性把不等式f(t2﹣2t)+f(3t2﹣k)<0恒成立转化为t2﹣2t>k﹣3t2 . 分离k后求出函数4t2﹣2t的值域得答案.
【考点精析】通过灵活运用函数单调性的判断方法,掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某三棱锥的三视图如图所示,则该三棱锥的表面积是(
A.2+
B.4+
C.2+2
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线c1:y2=2px(p>0)与曲线c2:(x﹣6)2+y2=36只有三个公共点O,M,N,其中O为坐标原点,且 =0.
(1)求曲线c1的方程;
(2)过定点M(3,2)的直线l与曲线c1交于A,B两点,若点M是线段AB的中点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,O、E分别是BD、BC的中点,CA=CB=CD=BD=2,AB=AD=
(Ⅰ)求证:AO⊥平面BCD;
(Ⅱ)求异面直线AB与CD所成角的余弦;
(Ⅲ)求点E到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足an+1>an , a1=1,且该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.
(1)求数列{an},{bn}的通项公式;
(2)令cn=anbn , 求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,数列{an}满足
(1)求证:数列{ }是等差数列;
(2)求数列{an}的通项公式;
(3)记Sn=a1a2+a2a3+…+anan+1 , 求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知函数f(x)= (a>1),求:
(1)判断函数的奇偶性;
(2)证明f(x)是R上的增函数;
(3)求该函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足:①f(0)=0,②f(x)+f(1﹣x)=1,③f( )= f(x)且当0≤x1<x2≤1时,f(x1)≤f(x2),则f( )+f( )等于(
A.1
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (x∈R),如图是函数f(x)在[0,+∞)上的图象,
(1)求a的值,并补充作出函数f(x)在(﹣∞,0)上的图象,说明作图的理由;
(2)根据图象指出(不必证明)函数的单调区间与值域;
(3)若方程f(x)=lnb恰有两个不等实根,求实数b的取值范围.

查看答案和解析>>

同步练习册答案