【题目】已知定义域为R的奇函数f(x)满足f(log2x)= .
(1)求函数f(x)的解析式;
(2)判断并证明f(x)在定义域 R的单调性;
(3)若对任意的t∈R,不等式f(t2﹣2t)+f(3t2﹣k)<0恒成立,求实数k的取值范围.
【答案】
(1)解:∵f(log2x)= ,∴令t=log2x,
则x=2t,代入原式中:f(t)= ,则f(x)= ,
又∵f(x)在R上是奇函数,∴f(0)=0,解得a=1.
则f(x)=
(2)解:由(1)知 ,
设x1<x2,则f(x1)﹣f(x2)= = .
∵函数y=2x在R上是增函数且x1<x2,
∴ ﹣ >0.
又( +1)( +1)>0,
∴f(x1)﹣f(x2)>0,即f(x1)>f(x2).
∴f(x)在(﹣∞,+∞)上为减函数
(3)解:∵f(x)是奇函数,
从而不等式:f(t2﹣2t)+f(3t2﹣k)<0等价于f(t2﹣2t)<﹣f(3t2﹣k)=f(k﹣3t2),
∵f(x)为减函数,由上式推得:t2﹣2t>k﹣3t2.
即对一切t∈[1,2]有:4t2﹣2t﹣k>0,k<4t2﹣2t,
当t=1时最小,则{k|k<2}
【解析】(1)由已知利用换元法求得函数解析式;(2)直接利用函数单调性的定义证明;(3)由(2)结合函数的奇偶性把不等式f(t2﹣2t)+f(3t2﹣k)<0恒成立转化为t2﹣2t>k﹣3t2 . 分离k后求出函数4t2﹣2t的值域得答案.
【考点精析】通过灵活运用函数单调性的判断方法,掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较即可以解答此题.
科目:高中数学 来源: 题型:
【题目】如图,曲线c1:y2=2px(p>0)与曲线c2:(x﹣6)2+y2=36只有三个公共点O,M,N,其中O为坐标原点,且 =0.
(1)求曲线c1的方程;
(2)过定点M(3,2)的直线l与曲线c1交于A,B两点,若点M是线段AB的中点,求线段AB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四面体ABCD中,O、E分别是BD、BC的中点,CA=CB=CD=BD=2,AB=AD= .
(Ⅰ)求证:AO⊥平面BCD;
(Ⅱ)求异面直线AB与CD所成角的余弦;
(Ⅲ)求点E到平面ACD的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足an+1>an , a1=1,且该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.
(1)求数列{an},{bn}的通项公式;
(2)令cn=anbn , 求数列{cn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,数列{an}满足 .
(1)求证:数列{ }是等差数列;
(2)求数列{an}的通项公式;
(3)记Sn=a1a2+a2a3+…+anan+1 , 求Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x)满足:①f(0)=0,②f(x)+f(1﹣x)=1,③f( )= f(x)且当0≤x1<x2≤1时,f(x1)≤f(x2),则f( )+f( )等于( )
A.1
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= (x∈R),如图是函数f(x)在[0,+∞)上的图象,
(1)求a的值,并补充作出函数f(x)在(﹣∞,0)上的图象,说明作图的理由;
(2)根据图象指出(不必证明)函数的单调区间与值域;
(3)若方程f(x)=lnb恰有两个不等实根,求实数b的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com