精英家教网 > 高中数学 > 题目详情
季节性服装当季节即将来临时,价格呈上升趋势,设某服装开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售;10周后当季节即将过去时,平均每周削价2元,直到16周末,该服装已不再销售.
(Ⅰ)试建立价格P与周次t之间的函数关系式;
(Ⅱ)若此服装每件进价Q与周次t之间的关系为Q=-0.125(t-8)2+12,t∈[0,16],t∈N,试问该服装第几周每件销售利润最大?最大值是多少?(注:每件销售利润=售价-进价)
分析:(Ⅰ)周次为t,对t进行分类研究,根据题意即可列出价格P与t之间的函数关系式;
(Ⅱ)分段由P-Q得到销售此服装的利润L与周次t的关系式,然后利用二次函数的单调性分段求最大值,最后取三段中最大值的最大者即可得到答案.
解答:解:(Ⅰ)根据题意可得,
P=
10-2t,t∈[0,5]
20,      t∈(5,10]
40-2t,t∈(10,16] 

(Ⅱ)设销售此服装每件的利润为L(元),
则L=P-Q=
10+2t+0.125(t-8)2-12,t∈[0,5]
20+0.125(t-8)2-12,t∈(5,10]
40-2t+0.125(t-8)2-12,t∈(10,16]

=
0.125t2+6,t∈[0,5]
0.125t2-2t+16,t∈(5,10]
0.125t2-4t+36,t∈(10,16]

①当0≤t≤5时且t∈N,函数L=0.125t2+6在区间[0,5]上单调递增,
故当t=5时,Lmax=9.125;
②当5<t≤10时且t∈N,函数L=0.125t2-2t+16在区间(5,8)上单调递减,在(8,10)上单调递增,
故当t=6或10时,Lmax=8.5;
③当10<t≤16且t∈N,函数L=0.125t2-4t+36在区间(10,16]上单调递减,
故当t=11时,Lmax=7.125.
综合①②③可得,当t=5时,Lmax=9.125,
答:第5周时,每件销售利润最大为9.125元.
点评:本题考查了函数模型的选择与应用.建立的数学模型为分段函数,求解分段函数的最值问题.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

季节性服装当季节即将来临时,价格呈上升趋势,设某服装开始时定价为10元,并且每周涨价2元,5周后开始保持20元的价格平稳销售;10周后当季节即将过去时,平均每周削价2元,直到16周末,该服装已不再销售.
(1)试建立价格P与周次t之间的函数关系式.
(2)若此服装每件进价Q与周次t之间的关系为Q=-0.125(t-8)2+12,t∈[0,16],t∈N*,试问该服装第几周每件销售利润L最大?(注:每件销售利润=售价-进价)

查看答案和解析>>

科目:高中数学 来源: 题型:

在某服装批发市场,季节性服装当季节即将来临时,价格呈现上升趋势,设某服装开始时定价10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售,10周后,当季节即将过去时,平均每周削价2元,直到16周末,该服装已不再销售.
(1)试求价格p(元)与周次t之间的函数关系式;
(2)若此服装每周进价q(元)与周次t之间的关系是q=-
18
(t-8)2+12
,t∈[1,16]且t∈N,试问该服装第几周每件销售利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

季节性服装当季节即将来临时,价格呈上升趋势,设某服装开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售;10周后当季节即将过去时,平均每周削价2元,直到16周末,该服装已不再销售.

(1)试建立价格P与周次t之间的函数关系式. w.w.w.k.s.5.u.c.o.m    

(2)若此服装每件进价Q与周次t之间的关系为Q=-0.125(t-8)2+12,t∈[0,16],t∈N*,试问该服装第几周每件销售利润L最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

在中国轻纺城批发市场,季节性服装当季节即将来临时,价格呈上升趋势. 设某服装开始时定价为 10 元,并且每周(7 天)涨价 2 元,5 周后开始保持 20 元的平稳销售;10 周后当季节即将过去时,平均每周降价 2 元,直到 16 周末,该服装已不再销售.

(1)试建立价格与周次之间的函数关系;

(2)若此服装每件进价与周次之间的关系式

,问该服装第几周每件销售利润最大?

查看答案和解析>>

同步练习册答案