精英家教网 > 高中数学 > 题目详情

【题目】(2015·湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图I所示

若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为( )
A.3
B.4
C.5
D.6

【答案】B
【解析】根据茎叶图中的数据,得成绩在区间[139, 151]上的运动员人数是20,用系统抽样方法从35人中抽取7人,成绩在区间[139, 151]上的运动员应抽取7X=4(人):故选B.
系统抽样是指当总体中个数较多时,将总体分成均衡的几部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本的抽样方法,其实质为等距抽样. 茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.缺点为不能直接反映总体的分布情况. 由数据集中情况可以估计平均数大小,再根据其分散程度可以估测方差大小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

(2015·新课标Ⅱ)设函数f(x)是奇函数f(x)(xR)的导函数,f(-1)=0,当x0时,xf'(x)-f(x)0,则使得f(x)0成立的x的取值范围是()


A.(-,-1)(0,1)
B.(-1,0)(1,+
C.(-,-1)(-1,0)
D.(0,1)(1,+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·四川)已知函数f(x)=2x , g(x)=x2+ax(其中aR).对于不相等的实数x1, x2 , 设m=,n=.
现有如下命题:
(1)对于任意不相等的实数x1, x2 , 都有m>0;
(2)对于任意的a及任意不相等的实数x1, x2 , ,都有n>0;
(3)对于任意的a , 存在不相等的实数x1, x2 , 使得m=n;
(4)对于任意的a , 存在不相等的实数x1, x2 , 使得m=-n.
其中的真命题有 (写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)在直角坐标系xOy中,直线l的参数方程为(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,c的极坐标方程为=2sin
(1)写出c的直角坐标方程;
(2)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·江苏)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1 , 设AB1的中点为D,B1CBC1=E.求证:

(1)DE∥平面AA1C1C
(2)BC1⊥AB1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖南)设数列{an}的前n项和为Sn , 已知a1=1, a2=2,且an+1=3Sn-Sn+1+3(n)
(1)证明:an+2=3an
(2)求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆(a>b>0)过点(0,),且离心率为

(Ⅰ)求椭圆E的方程;
(II)设直线x my 1,(m R)交椭圆E与A,B两点,判断点G(-,0)与以线段AB为直径的圆的位置关系,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖北)某厂用鲜牛奶在某台设备上生产两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产两种产品时间之和不超过12小时. 假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为

(Ⅰ)求Z的分布列和均值;该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(Ⅱ) 若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(2015·重庆)如题(20)图,三棱锥中,平面平面,,点D、E在线段上,且,在线段上,且


(1)证明:平面.
(2)若四棱锥P-DFBC的体积为7,求线段BC的长。

查看答案和解析>>

同步练习册答案