精英家教网 > 高中数学 > 题目详情
(本题满分14分)如图,三棱柱ABC—A1B1C1中,AA1面ABC,BCAC,BC=AC=2,D为AC的中点。

(1)若AA1=2,求证:
(2)若AA1=3,求二面角C1—BD—C的余弦值.
(1)见解析;(2).
本试题主要是考查了线面垂直的证明,以及二面角的求解的综合运用
(1)因为AA1= BC=2., 又AA1面ABC,关键是求证AC面B C1,从而得到线面垂直的证明。,
(2)利用三垂线定理,先作出二面角,然后借助于三角形的边角的关系得到结论。
(1)AA1= BC=2., 又AA1面ABC,,CC1ABC,, CC1 AC ,而BCAC,CC1BC=CAC面B C1,.. --------(7分)
(2)过点C作于点E,连接,CC1面ABC,, CC1BD, 又,CC1EC=C,,.故为二面角C1—BD—C的平面角。BC=2,CC1=3,,.在直角三角形中,CC1=3,. .-------------(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(10)分) 已知正方体是底对角线的交点.
 
求证:(1)∥面;(2). 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,四边形为直角梯形,,又,直线与直线所成角为

(Ⅰ)求证:平面平面
(Ⅱ)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

三棱锥中, 的中点,

(I)求证:
(II)若,且二面角,求与面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥的底面是正方形,侧棱⊥底面的中点.
(Ⅰ)证明//平面;            
(Ⅱ)求二面角的平面角的余弦值;
(Ⅲ)在棱上是否存在点,使⊥平面?若存在,请求出点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,四边形是等腰梯形,平面.
(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD-A1B1C1D1中,E为A1C1的中点,则直线CE垂直于  (   )
A.直线ACB.直线B1D1
C.直线A1D1D.直线A1A

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正四棱柱的底面边长为,点的中点,是平面内的一个动点,且满足的距离相等,则点的轨迹的长度为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是不同的平面,是不同的直线,给出下列命题:
①若,则
②若,则
③若是异面直线,则相交;
④若,且,则.
其中真命题的个数是
A.1B.2 C.3D.4

查看答案和解析>>

同步练习册答案