精英家教网 > 高中数学 > 题目详情

【题目】已知函数)是定义在上的奇函数.

(Ⅰ)求的值

(Ⅱ)求函数的值域

(Ⅲ)当 恒成立求实数的取值范围.

【答案】(Ⅰ) (Ⅱ) (Ⅲ) .

【解析】试题分析

(Ⅰ)由函数为奇函数可得,即,可得.(Ⅱ)分离常数可得,故函数为增函数,再由,可得,即可得函数的值域.(Ⅲ)通过分离参数可得时恒成立,令则有根据函数的单调性可得函数的最大值,从而可得实数的取值范围.

试题解析:

(Ⅰ)∵上的奇函数

.

整理可得

(注:本题也可由解得但要进行验证

(Ⅱ)由(Ⅰ)可得

∴函数上单调递增

∴函数的值域为

(Ⅲ)当时,

由题意得时恒成立,

时恒成立.

则有

∵当时函数为增函数

.

.

故实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣a|,a<0.
(Ⅰ)证明f(x)+f(﹣ )≥2;
(Ⅱ)若不等式f(x)+f(2x)< 的解集非空,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交的作品的件数按5天一组分组统计,绘制了频率分布直方图,如图所示,已知从左到右各长方形的高的比为2 : 3 : 4 : 6 : 4 :1,第三组的频数为12.

(1)求本次活动参加评比的作品的件数;

(2)哪组上交的作品数量最多,有多少件?

(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)求的定义域及其零点;

(2)讨论并用函数单调性定义证明函数在定义域上的单调性;

(3)设,当时,若对任意,存在,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在(不含80)之间,属于酒后驾车,在(含80)以上时,属于醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了300辆机动车,查处酒后驾车和醉酒驾车的驾驶员共20人,检测结果如下表:

酒精含量

人数

3

4

1

4

2

3

2

1

(1)绘制出检测数据的频率分布直方图(在图中用实线画出矩形框即可);

(2)求检测数据中醉酒驾驶的频率,并估计检测数据中酒精含量的众数、平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M,N两点.
(1)求k的取值范围;
(2)请问是否存在实数k使得 (其中O为坐标原点),如果存在请求出k的值,并求|MN|;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC的对边分别为abc , cos
(1)求cosB的值;
(2)若 b=2 ,求ac的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系 中,直线 的参数方程为 为参数).再以原点为极点,以 正半轴为极轴建立极坐标系,并使得它与直角坐标系 有相同的长度单位.在该极坐标系中圆 的方程为
(1)求圆 的直角坐标方程;
(2)设圆 与直线 交于点 ,若点 的坐标为 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某一随机变量x的概率分布如下,且 =5.9,则a的值为( )

2 -8

a

9

p

0.5

b-0.1

b


A.5
B.6
C.7
D.8

查看答案和解析>>

同步练习册答案