精英家教网 > 高中数学 > 题目详情

【题目】已知过抛物线y2=2px(p>0)的焦点,斜率为2 的直线交抛物线于A(x1 , y1)和B(x2 , y2)(x1<x2)两点,且|AB|=9,
(1)求该抛物线的方程;
(2)O为坐标原点,C为抛物线上一点,若 ,求λ的值.

【答案】
(1)解:直线AB的方程是y=2 (x﹣ ),与y2=2px联立,有4x2﹣5px+p2=0,

∴x1+x2=

由抛物线定义得:|AB|=x1+x2+p=9

∴p=4,∴抛物线方程是y2=8x


(2)解:由p=4,4x2﹣5px+p2=0得:x2﹣5x+4=0,

∴x1=1,x2=4,

y1=﹣2 ,y2=4 ,从而A(1,﹣2 ),B(4,4 ).

=(x3,y3)=(1,﹣2 )+λ(4,4 )=(4λ+1,4 λ﹣2

又[2 (2λ﹣1)]2=8(4λ+1),解得:λ=0,或λ=2


【解析】(1)直线AB的方程与y2=2px联立,有4x2﹣5px+p2=0,从而x1+x2= ,再由抛物线定义得:|AB|=x1+x2+p=9,求得p,则抛物线方程可得.(2)由p=4,4x2﹣5px+p2=0求得A(1,﹣2 ),B(4,4 ).再求得设 的坐标,最后代入抛物线方程即可解得λ.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一果农种植了1000棵果树,为估计其产量,从中随机选取20棵果树的产量(单位:kg)作为样本数据,得到如图所示的频率分布直方图.已知样本中产量在区间(45,50]上的果树棵数为8,

(1)求频率分布直方图中a,b的值;
(2)根据频率分布直方图,估计这20棵果树产量的中位数;
(3)根据频率分布直方图,估计这1000棵果树的总产量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].已知图中x=0.018,则由直观图估算出中位数(精确到0.1)的值为(

A.75.5
B.75.2
C.75.1
D.75.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中.
(1)设 = ,求证:△ABC是等腰三角形;
(2)设向量 =(2sinC,﹣ ), =(sin2C,2cos2 ﹣1),且 ,若sinA= ,求sin( ﹣B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=4 x的交点为椭圆 (a>b>0)的右焦点,且椭圆的长轴长为4,左右顶点分别为A,B,经过椭圆左焦点的直线l与椭圆交于C,D(异于A,B)两点.

(1)求椭圆标准方程;
(2)求四边形ADBC的面积的最大值;
(3)若M(x1 , y1)N(x2 , y2)是椭圆上的两动点,且满x1x2+2y1y2=0,动点P满足 (其中O为坐标原点),是否存在两定点F1 , F2使得|PF1|+|PF2|为定值,若存在求出该定值,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E,F分别是棱AB,BC的中点.证明A1 , C1 , F,E四点共面,并求直线CD1与平面A1C1FE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的函数,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式exf(x)>ex+1的解集为(
A.(0,+∞)
B.(﹣∞,0)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣∞,﹣1)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)满足f(x)+f(x+1)=0,且在[﹣3,﹣2]上f(x)=2x+5,A、B是三边不等的锐角三角形的两内角,则下列不等式正确的是(
A.f(sinA)>f(sinB)
B.f(cosA)>f(cosB)
C.f(sinA)>f(cosB)
D.f(sinA)<f(cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个匀速旋转的摩天轮每12分钟转一周,最低点距地面2米,最高点距地面18米,P是摩天轮轮周上一定点,从P在最低点时开始计时,则14分钟后P点距地面的高度是米.

查看答案和解析>>

同步练习册答案