精英家教网 > 高中数学 > 题目详情

【题目】某机构通过对某企业2018年的前三个季度生产经营情况的调查,得到每月利润(单位:万元)与相应月份数的部分数据如表:

3

6

9

241

244

229

1)根据上表数据,请从下列三个函数中选取一个恰当的函数描述x的变化关系,并说明理由:

2)利用(1)中选择的函数:

①估计月利润最大的是第几个月,并求出该月的利润;

②预估年底12月份的利润是多少?

【答案】1)选用函数;(2)①第5个月,利润为万元;②万元.

【解析】

1)从表格中的数据可发现函数模型需具备有增有减的性质,故选用函数模型为.

2)选用表格中两组数据可求得的值,再求二次函数的最值,从而解决问题.

1)由于函数都是单调的,与表格中的数据不吻合,所以选用函数有增有减.

2)由(1)得

时,时,

所以

所以.

①当时,,所以第5个月利润最大,且最大值为万元;

②当时,,所以第12个月的利润是万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx=的定义域为集合Agx=的定义域为集合BC=xR|x<ax>a+1

1)求集合A,(CAB

2)若AC=R,求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加某次知识竞赛测试的学生中随机抽出60名学生,将其成绩(百分制)(均为整数)分成六段后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:

1)求分数在内的频率,并补全这个频率分布直方图;

2)根据频率分布直方图,从图中估计总体的众数是多少分?中位数是多少分?

3)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究机构为了了解各年龄层对高考改革方案的关注程度,随机选取了200名年龄在内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分第一~五组区间分别为).

(1)求选取的市民年龄在内的人数;

(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人在座谈会中作重点发言,求作重点发言的市民中至少有一人的年龄在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(01)且斜率为k的直线l与圆C(x2)2(y3)21交于MN两点.

(1)k的取值范围;

(2)12,其中O为坐标原点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加.下表是某购物网站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据.

1)根据数据绘制的散点图能够看出可用线性回归模型拟合的关系请用相关系数加以说明;(系数精确到0.001

2)建立关于的回归方程(系数精确到0.01);如果该公司计划在9月份实现产品销量超6万件,预测至少需投入促销费用多少万元(结果精确到0.01.

参考数据 其中 分别为第个月的促销费用和产品销量 .

参考公式:(1)样本的相关系数

2)对于一组数据 其回归方程的斜率和截距的最小二乘估计分别为 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列叙述中正确的是( )

A. ,则的充分条件是

B. ,则的充要条件是

C. 命题的否定是

D. 是等比数列,则为单调递减数列的充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)excos xx.

(1)求曲线yf(x)在点(0f(0))处的切线方程;

(2)求函数f(x)在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一张矩形白纸ABCD,AB=10,AD=,E,F分别为AD,BC的中点,现分别将△ABE,△CDF沿BE,DF折起,且A、C在平面BFDE同侧,下列命题正确的是____________(写出所有正确命题的序号)

①当平面ABE∥平面CDF时,AC∥平面BFDE

②当平面ABE∥平面CDF时,AE∥CD

③当A、C重合于点P时,PG⊥PD

④当A、C重合于点P时,三棱锥P-DEF的外接球的表面积为150

查看答案和解析>>

同步练习册答案