分析 由$\frac{sinC}{sinA}$=3,利用正弦定理可得$\frac{c}{a}=3$,代入b2-a2=$\frac{5}{2}$ac,可得b2=$\frac{17{a}^{2}}{2}$.再利用余弦定理即可得出.
解答 解:在△ABC中,∵$\frac{sinC}{sinA}$=3,∴$\frac{c}{a}=3$,
∴c=3a,
代入b2-a2=$\frac{5}{2}$ac,
解得b2=$\frac{17{a}^{2}}{2}$.
则cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{a}^{2}+9{a}^{2}-\frac{17}{2}{a}^{2}}{2a•3a}$=$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.
点评 本题考查了正弦定理余弦定理的应用,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com