精英家教网 > 高中数学 > 题目详情

如图所示,在直角梯形ABCD中,∠A=∠B=90°,AD∥BC,E为AB上的点,DE平分∠ADC,CE平分∠BCD,以AB为直径的圆与CD有怎样的位置关系?

见解析

解析解 过E作EF⊥CD于F,

∵DE平分∠ADC,
CE平分∠BCD,
∠A=∠B=90°,
∴AE=EF=BE=AB.
∴以AB为直径的圆的圆心为E,
∴EF是圆心E到CD的距离,且EF=AB,
∴以AB为直径的圆与边CD是相切关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图:是⊙的直径,是弧的中点,,垂足为于点.

(1)求证:=;
(2)若=4,⊙的半径为6,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是⊙O的直径,BE为⊙O的切线,点C为⊙O上不同于AB的一点,AD为∠BAC的平分线,且分别与BC交于H,与⊙O交于D,与BE交于E,连接BDCD.
 
(1)求证:BD平分∠CBE
(2)求证:AH·BHAE·HC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,AB∥CD,OD2=OB·OE.

求证:AD∥CE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在△ABC中,I为△ABC的内心,AI交BC于D,交△ABC外接圆于E.

求证:(1)IE=EC;
(2)IE2=ED·EA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,四边形ABCD的边AB、BC、CD、DA和⊙O分别相切于点L、M、N、P.

求证:AB+CD=AD+BC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,D为△ABC中BC边上的一点,∠CAD=∠B,若AD=6,AB=10,BD=8,求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,△ABC的角平分线AD的延长线交它的外接圆于点E.

(1)证明:△ABE∽△ADC
(2)若△ABC的面积SAD·AE,求∠BAC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,为△外接圆的切线,的延长线交直线于点,分别为弦与弦上的点,且,四点共圆.

(Ⅰ)证明:是△外接圆的直径;
(Ⅱ)若,求过四点的圆的面积与△外接圆面积的比值.

查看答案和解析>>

同步练习册答案