精英家教网 > 高中数学 > 题目详情
已知椭圆C:(a>b>0)的离心率e=,原点到过点A(a,0),B(0,b)的直线的距离是
(1)求椭圆C的方程;
(2)若椭圆C上一动点P(x,y)关于直线y=2x的对称点为P1(x1,y1),求x12+y12的取值范围.
(3)如果直线y=kx+1(k≠0)交椭圆C于不同的两点E,F,且E,F都在以B为圆心的圆上,求k的值.
【答案】分析:(1)利用椭圆的离心率,a2=b2+c2,及其点到直线的距离公式即可得到a,b;
(2)利用轴对称即可得到点P(x,y)与其对称点P1(x1,y1)的坐标之间的关系,再利用点P(x,y)满足椭圆C的方程:得到关系式,进而即可求出;
(3)设E(x2,y2),F(x3,y3),EF的中点是M(xM,yM),则BM⊥EF得到关系式,把直线EF的方程与椭圆的方程联立得到根与系数的关系即可.
解答:解:(1)∵,a2=b2+c2
∴a=2b.
∵原点到直线AB:的距离
解得a=4,b=2.
故所求椭圆C的方程为
(2)∵点P(x,y)关于直线y=2x的对称点为点P1(x1,y1),

解得 

∵点P(x,y)在椭圆C:上,

∵-4≤x≤4,∴
的取值范围为[4,16].
(3)由题意消去y,整理得(1+4k2)x2+8kx-12=0.
可知△>0.
设E(x2,y2),F(x3,y3),EF的中点是M(xM,yM),

,yM=kxM+1=

∴xM+kyM+2k=0.

又∵k≠0,


点评:本题综合考查了椭圆的标准方程及其性质、点到直线的距离公式、直线与椭圆相交问题转化为方程联立得到根与系数的关系、相互垂直的直线斜率之间的关系、中点坐标公式等知识与方法,熟悉解题模式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年福建省龙岩市高三(上)期末质量检查一级达标数学试卷(文科)(解析版) 题型:解答题

已知椭圆C: (a>b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知一直线l过椭圆C的右焦点F2,交椭圆于点A、B.
(ⅰ)若满足(O为坐标原点),求△AOB的面积;
(ⅱ)当直线l与两坐标轴都不垂直时,在x轴上是否总存在一点P,使得直线PA、PB的倾斜角互为补角?若存在,求出P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试理科数学(四川卷解析版) 题型:解答题

(13分)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点

(I)求椭圆C的离心率:

(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源:2014届甘肃武威六中高二12月学段检测文科数学试题(解析版) 题型:解答题

(12分)已知椭圆C:(a>b>0)的一个顶点为A(2,0),离心率为,直线y=k(x-1)与椭圆C交于不同的两点M、N.

 ①求椭圆C的方程.

 ②当⊿AMN的面积为时,求k的值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省高三第七次月考理科数学 题型:解答题

已知椭圆C:+=1(a>b>0),直线y=x+与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,F1,F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2。⑴求椭圆C的方程。⑵若直线L:y=kx+m(k≠0)与椭圆C交于不同两点A,B且线段AB的垂直平分线过定点C(,0)求实数k的取值范围。

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:选择题

已知椭圆C:(a>b>0)的离心率为,过右焦点F且斜率为kk>0)的直线与椭圆C相交于A、B两点,若。则 (    ) 

(A)1     (B)2      (C)      (D)

 

查看答案和解析>>

同步练习册答案