精英家教网 > 高中数学 > 题目详情
10.若tan(α+$\frac{π}{4}$)=3+2$\sqrt{2}$,则$\frac{1-cos2α}{sin2α}$=$\frac{\sqrt{2}}{2}$.

分析 由已知结合两角差的正切求得tanα,再利用倍角公式化简要求值的代数式得答案.

解答 解:由tan(α+$\frac{π}{4}$)=3+2$\sqrt{2}$,得
tanα=tan[($α+\frac{π}{4}$)-$\frac{π}{4}$]=$\frac{tan(α+\frac{π}{4})-tan\frac{π}{4}}{1+tan(α+\frac{π}{4})tan\frac{π}{4}}=\frac{3+2\sqrt{2}-1}{1+(3+2\sqrt{2})×1}$=$\frac{\sqrt{2}}{2}$.
∴$\frac{1-cos2α}{sin2α}$=$\frac{2si{n}^{2}α}{2sinαcosα}=tanα$=$\frac{\sqrt{2}}{2}$.
故答案为:$\frac{\sqrt{2}}{2}$.

点评 本题考查三角函数的化简与求值,考查了同角三角函数基本关系式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.过双曲线${x^2}-\frac{y^2}{3}=1$的右焦点作直线l交双曲线于A,B两点,则满足|AB|=6的直线l有(  )条.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设a、b是两条不同的直线,α、β是两个不同的平面,下列命题中正确的是(  )
A.若α⊥β,a?α,b?β,则a⊥bB.若α∥β,a?α,b?β,则a∥b
C.若α⊥β,a?α,a⊥b,则b∥βD.若a⊥α,a∥b,b∥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知P,A,B,C四点共面且对于空间任一点O都有$\overrightarrow{OP}$=2$\overrightarrow{OA}$+$\frac{4}{3}$$\overrightarrow{OB}$+λ$\overrightarrow{OC}$,则λ=-$\frac{7}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知两圆C1:x2+2x+y2-48=0,C2:x2-2x+y2=0,若动圆P与圆C1相内切,与圆C2相外切.
(1)求动圆圆心P的轨迹方程.
(2)若直线1:(k+1)x+(k-1)y+(2k+2)=0,判断直线1与动圆圆心P所在曲线的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知cos(75°+α)=$\frac{3}{5}$,且75°+α是第四象限角,求cos(105°-α)+sin(α-105°)+sin(15°-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求证:$\frac{π}{2}$是函数f(x)=|sinx|+|cosx|的一个周期.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知直线l1:2x-y-4=0与直线l2:x+y-2=0相交于点P,求:
(1)以点P为圆心,半径为1的圆C的方程;
(2)在(1)的条件下,过点M(1,3)的直线l与圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图是函数f(x)=x2+ax-b的部分图象,函数g(x)=ex-f′(x)的零点所在的区间是(k,k+1)(k∈Z),则k的值为(  )
A.-1或0B.0C.-1或1D.0或1

查看答案和解析>>

同步练习册答案