精英家教网 > 高中数学 > 题目详情

【题目】某中学为了解高一年级学生身高发育情况,对全校名高一年级学生按性别进行分层抽样检查,测得身高(单位:)频数分布表如表、表.

:男生身高频数分布表

身高/

频数

:女生身高频数分布表

身高/

频数

(1)求该校高一女生的人数;

(2)估计该校学生身高在的概率;

(3)以样本频率为概率,现从高一年级的男生和女生中分别选出人,设表示身高在学生的人数,求的分布列及数学期望.

【答案】(1) (2) (3)见解析

【解析】

分析:(1)设高一女生人数为由表1和表2可得样本中男女生人数分别为40,30,解方程求得的值;

(2)由表1和表2可得样本中身高落在范围内的男女生人数为样本容量为70,可得样本中该学校学生身高在范围内的概率为即估计该校学生身高在的概率;

(3)由题意可得:X的可能取值为0,1,2,由表格可知:女生身高在的概率为男生身高在的概率为即可得出X的分布列与数学期望.

详解(1)设高一女同学人数为,由表和表可得样本中男、女人数分别为,则,解得.

即高一女学生人数为.

(2)由表和表可得样本中男女身高在的人数为,样本容量为.

所以样本中该校学生身高在的概率为.

因此,可估计该校学生身高在的概率为.

(3)由题意可得的可能取值为

由表格可知,身高在的概率为,男生身高在的概率为.

所以

所以的分布列为:

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)求直线的极坐标方程和曲线的直角坐标方程;

(2)若直线与曲线交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选出条较为详细的评价信息进行统计,车辆状况的优惠活动评价的列联表如下:

对优惠活动好评

对优惠活动不满意

合计

对车辆状况好评

对车辆状况不满意

合计

(1)能否在犯错误的概率不超过的前提下认为优惠活动好评与车辆状况好评之间有关系?

(2)为了回馈用户,公司通过向用户随机派送骑行券.用户可以将骑行券用于骑行付费,也可以通过转赠给友.某用户共获得了张骑行券,其中只有张是一元券.现该用户从这张骑行券中随机选取张转赠给好友,求选取的张中至少有张是一元券的概率.

参考数据:

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若f(-1)=f(1),求a,并直接写出函数的单调增区间;

(2)当a时,是否存在实数x,使得=一?若存在,试确定这样的实数x的个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数,函数.

1)当时,求的最小值;

2)当,判断的单调性,并说明理由;

3)求实数的范围,使得对于区间上的任意三个实数,都存在以为边长的三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,A={x|x2﹣2x﹣3≤0},B={x|2≤x<5},C={x|x>a}.

(1)求A∩(UB);

(2)若A∪C=C,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班准备从甲、乙、丙等6人中选出4人参加某项活动,要求甲、乙、丙三人中至少有两人参加,那么不同的方法有 ( )

A. 18种 B. 12种 C. 432种 D. 288种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知直线上两点的极坐标分别为,圆的参数方程为为参数).

1)设为线段的中点,求直线的平面直角坐标方程;

2)判断直线与圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为美化环境,某市计划在以两地为直径的半圆弧上选择一点建造垃圾处理厂(如图所示).已知两地的距离为,垃圾场对某地的影响度与其到该地的距离有关,对两地的总影响度对地的影响度和对地影响度的和.记点到地的距离为,垃圾处理厂对两地的总影响度为.统计调查表明:垃圾处理厂对地的影响度与其到地距离的平方成反比,比例系数为;对地的影响度与其到地的距离的平方成反比,比例系数为.当垃圾处理厂建在弧的中点时,对两地的总影响度为.

(1)将表示成的函数;

(2)判断弧上是否存在一点,使建在此处的垃圾处理厂对两地的总影响度最小?若存在,求出该点到地的距离;若不存在,说明理由.

查看答案和解析>>

同步练习册答案