A. | $2+\sqrt{6}$ | B. | 2 | C. | $2+\sqrt{10}$ | D. | 7 |
分析 判断几何体的形状,利用三视图的数据求解几何体的侧面积.
解答 解:由题意可知几何体是长方体的一个角的三视图,
长方体的三度为:2,2,1,
垂直底面的两个侧面面积为:$\frac{1}{2}×2×1+\frac{1}{2}×2×1$=2,
另一个侧面是等腰三角形,底边为:2$\sqrt{2}$,腰长为:$\sqrt{5}$,
面积为:$\frac{1}{2}×2\sqrt{2}×\sqrt{{(\sqrt{5})}^{2}-{(\sqrt{2})}^{2}}$=$\sqrt{6}$.
侧面积为:2+$\sqrt{6}$.
故选:A.
点评 本题考查三视图求解几何体的侧面积,判断几何体的形状是解题的关键,考查空间想象能力以及计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com