精英家教网 > 高中数学 > 题目详情
(2010•湖北模拟)设A、B分别是x轴,y轴上的动点,P在直线AB上,且
AP
=
3
2
PB
,|
AB
|=2+
3

(1)求点P的轨迹E的方程;
(2)已知E上定点K(-2,0)及动点M、N满足
KM
KN
=0,试证:直线MN必过x轴上的定点.
分析:(1)设P(x,y),A(xA,0),B(0,yB).则
AP
=(x-xA,y),
PB
=(-x,yB-y).由
AP
=
3
2
PB
,得xA=x+
3
2
x
,yB=y+
2
3
y
.由|
AB
|=2+
3
,得到动点P的轨迹E的方程.
(2)设KM:y=k(x+2)(k≠0)与3x2+4y2-12=0联立,得(3+4k2)x2+16k2x+16k2-12=0,然后由根与系数的关系能够导出直线MN的方程,令y=0得直线MN必过x轴上的定点.
解答:解:(1)设P(x,y),A(xA,0),B(0,yB).
AP
=(x-xA,y),
PB
=(-x,yB-y).
AP
=
3
2
PB

得xA=x+
3
2
x
,yB=y+
2
3
y

由|
AB
|=2+
3

得到动点P的轨迹E的方程.
3x2+4y2-12=0.
可得点P的轨迹E的方程:
x2
4
+
y2
3
=1(5分)
(2)设KM:y=k(x+2)(k≠0)与3x2+4y2-12=0联立
(3+4k2)x2+16k2x+16k2-12=0
设M(x1,y1),
则x0+x1=-
16k2
3+4k2
,x1=
16k2
3+4k2
+2=
6-8k2
3+4k2

y1=k(x+2)=
12k
3+4k2

∴M(
6-8k2
3+4k2
12k
3+4k2

设KN:y=-
1
k
(x+2)(k≠0),
同理可得:N(
6k2-8
3k2+4
,-
12k
3k2+4
)(8分)
kMN=
yM-yN
xM-xN
=-
7k
4(k2-1)
  (k2≠1)(10分)
则MN:y-
12k
3+4k2
=-
7k
4(k2-1)
(x-
6-8k2
3+4k2

化简可得y=-
7k
4(k2-1)
(x+
2
7

即MN过定点(-
2
7
,0),另MN斜率不存在时,也过(-
2
7
,0)(13分)
∴直线M、N必过定点(-
2
7
,0).
点评:本题考查圆锥曲线的性质和应用,解题时要注意挖掘隐含条件,根据实际情况注意公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•湖北模拟)如图,正方体AC1的棱长为1,连接AC1,交平面A1BD于H,则以下命题中,错误的命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•湖北模拟)如图,在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,点E是PD的中点.
(1)证明:AC⊥PB;
(2)证明:PB∥平面AEC;
(3)求二面角E-AC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•湖北模拟)等比数列{an}的公比为q,则“a1>0,且q>1”是“对于任意正自然数n,都有an+1>an”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•湖北模拟)△ABC内接于以O为圆心,半径为1的圆,且3
OA
+4
OB
+5
OC
=
0
,则△ABC的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•湖北模拟)已知数列|an|满足:an=n+1+
8
7
an+1
,且存在大于1的整数k使ak=0,m=1+
8
7
a1

(1)用k表示m(化成最简形式);
(2)若m是正整数,求k与m的值;
(3)当k大于7时,试比较7(m-49)与8(k2-k-42)的大小.

查看答案和解析>>

同步练习册答案