精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)是定义域为R的奇函数,当x<0时,.

(1)求f(2)的值;

(2)用定义法判断yf(x)在区间(-∞,0)上的单调性.

(3)求的解析式

【答案】(1);(2)见解析;(3)

【解析】

(1)利用函数的奇偶性求解.

(2)函数单调性定义,通过化解判断函数值差的正负;

(3)函数为R奇函数,x〈0的解析式已知,利用奇函数图像关于原点对称,即可求出x〉0的解析式.

(1)由函数f(x)为奇函数,知f(2)=-f(-2)=·

(2)在(-∞,0)上任取x1x2,且x1<x2

x1-1<0,x2-1<0,x2x1>0,知f(x1)-f(x2)>0,即f(x1)>f(x2).

由定义可知,函数yf(x)在区间(-∞,0]上单调递减.·

(3)当x>0时,-x<0,

由函数f(x)为奇函数知f(x)=-f(-x),

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)的定义域为R,且满足

(1)f(1)=3

(2)对于任意的,总有

(3)对于任意的

(I)求f(0)及f(-1)的值

(II)求证:函数y=f(x)-1为奇函数

(III)若,求实数m的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 若对任意的正整数n,总存在正整数m,使得Sn=am , 则称{an}是“H数列”.
(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;
(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;
(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列{an},若an+2﹣an=d(d是与n无关的常数,n∈N*),则称数列{an}叫做“弱等差数列”,已知数列{an}满足:a1=t,a2=s且an+an+1=an+b对于n∈N*恒成立,(其中t,s,a,b都是常数).
(1)求证:数列{an}是“弱等差数列”,并求出数列{an}的通项公式;
(2)当t=1,s=3时,若数列{an}是等差数列,求出a、b的值,并求出{an}的前n项和Sn
(3)若s>t,且数列{an}是单调递增数列,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《张丘建算经》是公元5世纪中国古代内容丰富的数学著作,书中卷上第二十三问:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈.问日益几何?”其意思为“有个女子织布,每天比前一天多织相同量的布,第一天织五尺,一个月(按30天计)共织390尺.问:每天多织多少布?”已知1匹=4丈,1丈=10尺,估算出每天多织的布的布约有(
A.0.55尺
B.0.53尺
C.0.52尺
D.0.5尺

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的两个焦点分别为 ,且点在椭圆.

1求椭圆的标准方程;

2设椭圆的左顶点为,过点的直线与椭圆相交于异于的不同两点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2ωx+2 sinωxcosωx﹣cos2ωx(ω>0),f(x)的图象相邻两条对称轴的距离为
(1)求f( )的值;
(2)将f(x)的图象上所有点向左平移m(m>0)个长度单位,得到y=g(x)的图象,若y=g(x)图象的一个对称中心为( ,0),当m取得最小值时,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=ax2-(3a-1)x+a2在[1,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:
1)若α>β且α、β都是第一象限角,则tanα>tanβ;
2)“对任意x∈R,都有x2≥0”的否定为“存在x0∈R,使得 <0”;
3)已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则(p)∨q为真命题;
4)函数 是偶函数.
其中真命题的个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案