【题目】已知函数f(x)是定义域为R的奇函数,当x<0时,.
(1)求f(2)的值;
(2)用定义法判断y=f(x)在区间(-∞,0)上的单调性.
(3)求的解析式
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)的定义域为R,且满足
(1)f(1)=3
(2)对于任意的,总有
(3)对于任意的
(I)求f(0)及f(-1)的值
(II)求证:函数y=f(x)-1为奇函数
(III)若,求实数m的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn , 若对任意的正整数n,总存在正整数m,使得Sn=am , 则称{an}是“H数列”.
(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;
(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;
(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列{an},若an+2﹣an=d(d是与n无关的常数,n∈N*),则称数列{an}叫做“弱等差数列”,已知数列{an}满足:a1=t,a2=s且an+an+1=an+b对于n∈N*恒成立,(其中t,s,a,b都是常数).
(1)求证:数列{an}是“弱等差数列”,并求出数列{an}的通项公式;
(2)当t=1,s=3时,若数列{an}是等差数列,求出a、b的值,并求出{an}的前n项和Sn;
(3)若s>t,且数列{an}是单调递增数列,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《张丘建算经》是公元5世纪中国古代内容丰富的数学著作,书中卷上第二十三问:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈.问日益几何?”其意思为“有个女子织布,每天比前一天多织相同量的布,第一天织五尺,一个月(按30天计)共织390尺.问:每天多织多少布?”已知1匹=4丈,1丈=10尺,估算出每天多织的布的布约有( )
A.0.55尺
B.0.53尺
C.0.52尺
D.0.5尺
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的两个焦点分别为, ,且点在椭圆上.
(1)求椭圆的标准方程;
(2)设椭圆的左顶点为,过点的直线与椭圆相交于异于的不同两点,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin2ωx+2 sinωxcosωx﹣cos2ωx(ω>0),f(x)的图象相邻两条对称轴的距离为 .
(1)求f( )的值;
(2)将f(x)的图象上所有点向左平移m(m>0)个长度单位,得到y=g(x)的图象,若y=g(x)图象的一个对称中心为( ,0),当m取得最小值时,求g(x)的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
1)若α>β且α、β都是第一象限角,则tanα>tanβ;
2)“对任意x∈R,都有x2≥0”的否定为“存在x0∈R,使得 <0”;
3)已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则(p)∨q为真命题;
4)函数 是偶函数.
其中真命题的个数是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com