精英家教网 > 高中数学 > 题目详情

给定椭圆.称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.

(1) ; (2) 垂直.

解析试题分析:(1)由“椭圆C的一个焦点为,其短轴上的一个端点到F的距离为”知:从而可得椭圆的标准方程和“准圆”的方程;
(2)分两种情况讨论:①当中有一条直线斜率不存在;②直线斜率都存在.
对于①可直接求出直线的方程并判断其是不互相垂直;
对于②设经过准圆上点与椭圆只有一个公共点的直线为
与椭圆方程联立组成方程组消去得到关于的方程:
化简整理得:
而直线的斜率正是方程的两个根,从而
(1)
椭圆方程为
准圆方程为
(2)①当中有一条无斜率时,不妨设无斜率,
因为与椭圆只有一个共公点,则其方程为
方程为时,此时与准圆交于点
此时经过点(或)且与椭圆只有一个公共眯的直线是(或
(或),显然直线垂直;
同理可证方程为时,直线也垂直.
②当都有斜率时,设点其中
设经过点与椭圆只有一个公共点的直线为
则由消去,得

化简整理得:
因为,所以有
的斜率分别为,因为与椭圆只有一个公共点
所以满足上述方程

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的左右顶点分别为,离心率
(1)求椭圆的方程;
(2)若点为曲线:上任一点(点不同于),直线与直线交于点为线段的中点,试判断直线与曲线的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•湖北)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN的面积分别为S1和S2
(1)当直线l与y轴重合时,若S1=λS2,求λ的值;
(2)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在与椭圆交于两点的直线,使得成立?若存在,求出实数的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给定椭圆.称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知动点到点的距离为,到轴的距离为,且
(1)求点的轨迹的方程;
(2) 若直线斜率为1且过点,其与轨迹交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点的椭圆C: 的一个焦点为为椭圆C上一点,△MOF2的面积为.
(1)求椭圆C的方程;
(2)是否存在平行于OM的直线l,使得l与椭圆C相交于A、B两点,且以线段AB为直径的圆恰好过原点?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的中心和抛物线的顶点均为原点的焦点均在轴上,过的焦点F作直线,与交于A、B两点,在上各取两个点,将其坐标记录于下表中:


(1)求的标准方程;
(2)若交于C、D两点,的左焦点,求的最小值;
(3)点上的两点,且,求证:为定值;反之,当为此定值时,是否成立?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点在抛物线上,直线,且)与抛物线,相交于两点,直线分别交直线于点.
(1)求的值;
(2)若,求直线的方程;
(3)试判断以线段为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.

查看答案和解析>>

同步练习册答案