精英家教网 > 高中数学 > 题目详情

【题目】设函数 ,其中0<ω<2; (Ⅰ)若f(x)的最小正周期为π,求f(x)的单调增区间;
(Ⅱ)若函数f(x)的图象的一条对称轴为 ,求ω的值.

【答案】解:(Ⅰ)∵f(x)= sin2ωx+ =sin(2ωx+ )+
∵T=π,ω>0,

∴ω=1.


所以f(x)的单调增区间为:
(Ⅱ)∵ 的一条对称轴方程为


又0<ω<2,

∴k=0,

【解析】(Ⅰ)利用辅助角公式将f(x)= sin2ωx+ 化为:f(x)=sin(2ωx+ )+ ,T=π,可求得ω,从而可求f(x)的单调增区间;(Ⅱ)由f(x)的图象的一条对称轴为 ,可得到: ,从而可求得ω= k+ ,又0<ω<2,从而可求得ω.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1 , a14=b4 . (Ⅰ)求{an}的通项公式;
(Ⅱ)设cn=an+bn , 求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,(ω>0),其最小正周期为
(1)求f(x)的表达式;
(2)将函数f(x)的图象向右平移 个单位,再将图象上各点的横坐标伸长到原来的4倍(纵坐标不变),得到函数y=g(x)的图象,若关于x的方程g(x)+m=0在区间 上有且只有一个实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,菱形与正三角形所在平面互相垂直, 平面,且 .

(1)求证: 平面

2)若,求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sin(2x﹣ )的图象先向左平移 个单位,再将图象上各点的横坐标变为原来的 倍(纵坐标不变),那么所得图象的解析式为y=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,半径为1,圆心角为 的圆弧 上有一点C.
(1)若C为圆弧AB的中点,点D在线段OA上运动,求| + |的最小值;
(2)若D,E分别为线段OA,OB的中点,当C在圆弧 上运动时,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=gx)=1-ax2

(1)若函数fx)和gx)的图象在x=1处的切线平行,求a的值;

(2)当x∈[0,1]时,不等式fx)≤gx)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=2ax﹣ +lnx在x=1与x= 处都取得极值. (Ⅰ) 求a,b的值;
(Ⅱ)设函数g(x)=x2﹣2mx+m,若对任意的x1∈[ ,2],总存在x2∈[ ,2],使得g(x1)≥f(x2)﹣lnx2 , 求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学在独立完成课本上的例题:“求证: + <2 ”后,又进行了探究,发现下面的不等式均成立. + <2
+ <2
+ <2
+ <2
+ ≤2
(1)请根据上述不等式归纳出一个一般性的不等式;(用字母表示)
(2)请用合适的方法证明你写出的不等式成立.

查看答案和解析>>

同步练习册答案