精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点 在直线,(为长半轴,为半焦距)上.

1)求椭圆的标准方程

2)求以OM为直径且被直线截得的弦长为2的圆的方程;

3)设F是椭圆的右焦点,过点FOM的垂线与以OM为直径的圆交于点N.求证:线段ON的长为定值,并求出这个定值.

【答案】1;(2;(3)证明见解析,定值为

【解析】

1)由题可知,再结合,可求出 ,从而可得椭圆的标准方程;

2)设出以OM为直径的圆的方程,变为标准方程后找出圆心和半径,由以OM为直径的圆被直线截得的弦长为2,过圆心作弦的垂线,根据垂径定理得到垂足为中点,由弦的一半,半径以及圆心到直线的距离即弦心距构成直角三角形,利用点到直线的距离公式表示出圆心到直线的距离,根据勾股定理列出关于的方程,求出方程的解即可得到的值,即可确定出所求圆的方程;

3)设出点的坐标,表示出,由,得到两向量的数量积为0,利用平面向量的数量积的运算法则表示出一个关系式,又,同理根据平面向量的数量积的运算法则得到另一个关系式,把前面得到的关系式代入,即可求出线段ON的长,从而得到线段ON的长为定值.

1)又由点M在准线上,得

从而

所以椭圆方程为

2)以OM为直径的圆的方程为

其圆心为,半径

因为以OM为直径的圆被直线截得的弦长为2

所以圆心到直线的距离

所以

解得

所求圆的方程为

3)方法一:由平面几何知:

直线OM,直线FN

所以线段ON的长为定值.

方法二、设,则

所以,为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,是棱的中点,.

1)证明:平面

2)设是线段的中点,且平面,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,抛物线E顶点在坐标原点,焦点为.以坐标原点为极点,x轴非负半轴为极轴建立极坐标系.

(Ⅰ)求抛物线E的极坐标方程;

(Ⅱ)过点倾斜角为的直线lEMN两点,若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,EF分别为ADBC的中点.以EF为折痕把四边形EFCD折起,使点C到达点M的位置,点D到达点N的位置,且

1)求证:平面NEB

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国制造2025》是经国务院总理李克强签批,由国务院于20155月印发的部署全面推进实施制造强国的战略文件,是中国实施制造强国战略第一个十年的行动纲领.制造业是国民经济的主体,是立国之本、兴国之器、强国之基.发展制造业的基本方针为质量为先,坚持把质量作为建设制造强国的生命线.某制造企业根据长期检测结果,发现生产的产品质量与生产标准的质量差都服从正态分布Nμσ2),并把质量差在(μσμ+σ)内的产品为优等品,质量差在(μ+σμ+2σ)内的产品为一等品,其余范围内的产品作为废品处理.优等品与一等品统称为正品.现分别从该企业生产的正品中随机抽取1000件,测得产品质量差的样本数据统计如下:

1)根据频率分布直方图,求样本平均数

2)根据大量的产品检测数据,检查样本数据的方差的近似值为100,用样本平均数作为μ的近似值,用样本标准差s作为σ的估计值,求该厂生产的产品为正品的概率.(同一组中的数据用该组区间的中点值代表)

[参考数据:若随机变量ξ服从正态分布Nμσ2),则:Pμσξμ+σ≈0.6827Pμ2σξμ+2σ≈0.9545Pμ3σξμ+3σ≈0.9973

3)假如企业包装时要求把3件优等品球和5件一等品装在同一个箱子中,质检员每次从箱子中摸出三件产品进行检验,记摸出三件产品中优等品球的件数为X,求X的分布列以及期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂包装白糖的生产线,正常情况下生产出来的白糖质量服从正态分布(单位:).

(Ⅰ)求正常情况下,任意抽取一包白糖,质量小于的概率约为多少?

(Ⅱ)该生产线上的检测员某天随机抽取了两包白糖,称得其质量均小于,检测员根据抽检结果,判断出该生产线出现异常,要求立即停产检修,检测员的判断是否合理?请说明理巾.

附:,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点满足方程.

1)求点的轨迹的方程;

2)作曲线关于轴对称的曲线,记为,在曲线上任取一点,过点作曲线的切线,若切线与曲线交于,两点,过点,分别作曲线的切线,,证明:,的交点必在曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数xy满足约束条件,若目标函数的最大值为4,则ab的最大值为________的最小值为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)若函数有两个不同的极值点,求证:

3)设,函数的反函数为,令,若时,对任意的恒成立,求的最小值.

查看答案和解析>>

同步练习册答案