【题目】如图,将边长为1的正方形ABCD沿x轴正向滚动,先以A为中心顺时针旋转,当B落在x轴时,又以B为中心顺时针旋转,如此下去,设顶点C滚动时的曲线方程为,则下列说法不正确的是
A.恒成立B.
C.D.
科目:高中数学 来源: 题型:
【题目】已知曲线C的极坐标方程是,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C经过伸缩变换得到曲线E,直线l:(t为参数)与曲线E交于A,B两点,
(1)设曲线C上任一点为,求的最小值;
(2)求出曲线E的直角坐标方程,并求出直线l被曲线E截得的弦AB长;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】试比较下面概率的大小:
(1)如果以连续掷两次骰子依次得到的点数m,n作为点P的横、纵坐标,点P在直线的下面包括直线的概率;
(2)在正方形,,x,,随机地投掷点P,求点P落在正方形T内直线的下面包括直线的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某水果种植基地引进一种新水果品种,经研究发现该水果每株的产量(单位:)和与它“相近”的株数具有线性相关关系(两株作物“相近”是指它们的直线距离不超过),并分别记录了相近株数为0,1,2,3,4时每株产量的相关数据如下:
0 | 1 | 2 | 3 | 4 | |
15 | 12 | 11 | 9 | 8 |
(1)求出该种水果每株的产量关于它“相近”株数的回归方程;
(2)有一种植户准备种植该种水果500株,且每株与它“相近”的株数都为,计划收获后能全部售出,价格为10元,如果收入(收入=产量×价格)不低于25000元,则的最大值是多少?
(3)该种植基地在如图所示的直角梯形地块的每个交叉点(直线的交点)处都种了一株该种水果,其中每个小正方形的边长和直角三角形的直角边长都为,已知该梯形地块周边无其他树木影响,若从所种的该水果中随机选取一株,试根据(1)中的回归方程,预测它的产量的分布列与数学期望.
附:回归方程中斜率和截距的最小二乘法估计公式分别为:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的长轴长与焦距分别为方程的两个实数根.
(1)求椭圆的标准方程;
(2)若直线过点且与椭圆相交于,两点,是椭圆的左焦点,当面积最大时,求直线的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com