精英家教网 > 高中数学 > 题目详情

【题目】东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80.从今年起,工厂投入100万元科技成本,并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本与科技成本的投入次数的关系是=.若水晶产品的销售价格不变,次投入后的年利润为万元.①求出的表达式;问从今年算起第几年利润最高?最高利润为多少万元?

【答案】1)年利润为

2)从今年算起第8年利润最高,最高利润为520万元.

【解析】

解:(1). n次投入后,产量为10+n万件,价格为100元,固定成本为元,

科技成本投入为100n, …………2

所以,年利润为…………6

(2).(1)

=(万元) …………9

当且仅当

时,利润最高,最高利润为520万元.…………11

答:从今年算起第8年利润最高,最高利润为520万元. …………12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三棱柱的底面是正三角形,侧面为菱形,且,平面平面分别是的中点.

1)求证:平面

2)求证:

3)求与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 (a>b>0)的左焦点为F上顶点为B. 已知椭圆的离心率为A的坐标为.

I)求椭圆的方程;

II)设直线l 与椭圆在第一象限的交点为Pl与直线AB交于点Q. (O为原点) k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为担任班主任的教师办理手机语音月卡套餐,为了解通话时长,采用随机抽样的方法,得到该校100位班主任每人的月平均通话时长(单位:分钟)的数据,其频率分布直方图如图所示,将频率视为概率.

(1)求图中的值;

(2)估计该校担任班主任的教师月平均通话时长的中位数;

(3)在这两组中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求抽取的2人恰在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在平行四边形中,边的中点,将沿折起,使点到达点的位置,且

(1)求证; 平面平面

(2)若平面和平面的交线为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆及直线.

(1)证明:不论取什么实数,直线与圆C总相交;

(2)求直线被圆C截得的弦长的最小值及此时的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面ABCD是等边三角形,四边形ABCD是矩形,F为棱PA上一点,且MAD的中点,四棱锥的体积为

1)若NPB的中点,求证:平面平面PCD

2)在(Ⅰ)的条件,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在实数使得则称是区间一内点.

(1)求证:的充要条件是存在使得是区间一内点;

(2)若实数满足:求证:存在,使得是区间一内点;

(3)给定实数,若对于任意区间是区间的一内点,是区间的一内点,且不等式和不等式对于任意都恒成立,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】禽流感一直在威胁我们的生活,某疾病控制中心为了研究禽流感病毒繁殖个数(个)随时间(天)变化的规律,收集数据如下:

天数

1

2

3

4

5

6

繁殖个数

6

12

25

49

95

190

作出散点图可看出样本点分布在一条指数型函数的周围.

保留小数点后两位数的参考数据:

,其中

(1)求出关于的回归方程(保留小数点后两位数字);

(2)已知,估算第四天的残差.

参考公式:

查看答案和解析>>

同步练习册答案