【题目】东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本,并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本与科技成本的投入次数的关系是=.若水晶产品的销售价格不变,第次投入后的年利润为万元.①求出的表达式;②问从今年算起第几年利润最高?最高利润为多少万元?
科目:高中数学 来源: 题型:
【题目】设椭圆 (a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且.
(I)求椭圆的方程;
(II)设直线l: 与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若 (O为原点) ,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为担任班主任的教师办理手机语音月卡套餐,为了解通话时长,采用随机抽样的方法,得到该校100位班主任每人的月平均通话时长(单位:分钟)的数据,其频率分布直方图如图所示,将频率视为概率.
(1)求图中的值;
(2)估计该校担任班主任的教师月平均通话时长的中位数;
(3)在,这两组中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求抽取的2人恰在同一组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在平行四边形中,点是边的中点,将沿折起,使点到达点的位置,且
(1)求证; 平面平面;
(2)若平面和平面的交线为,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面平面ABCD,是等边三角形,四边形ABCD是矩形,,F为棱PA上一点,且,M为AD的中点,四棱锥的体积为.
(1)若,N是PB的中点,求证:平面平面PCD;
(2)在(Ⅰ)的条件,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若存在实数使得则称是区间的一内点.
(1)求证:的充要条件是存在使得是区间的一内点;
(2)若实数满足:求证:存在,使得是区间的一内点;
(3)给定实数,若对于任意区间,是区间的一内点,是区间的一内点,且不等式和不等式对于任意都恒成立,求证:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】禽流感一直在威胁我们的生活,某疾病控制中心为了研究禽流感病毒繁殖个数(个)随时间(天)变化的规律,收集数据如下:
天数 | 1 | 2 | 3 | 4 | 5 | 6 |
繁殖个数 | 6 | 12 | 25 | 49 | 95 | 190 |
作出散点图可看出样本点分布在一条指数型函数的周围.
保留小数点后两位数的参考数据:
,,,,,,,,其中
(1)求出关于的回归方程(保留小数点后两位数字);
(2)已知,估算第四天的残差.
参考公式:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com